AFFINELY ORDERED LIE GROUPS AND AXIOMATIZATION OF PSEUDO-EUCLIDEAN GEOMETRY

UDC 513.82:519.46

A. K. GUTS AND N. L. SHALAMOVA

This note is concerned with the affine orders on 3-dimensional solvable Lie groups, i.e., orders specified, in the affine coordinates belonging to an affine structure on a group, by families of cones. Our object is to determine the connection between the different affine structures on a 3-dimensional Lie group and the orders that are realized as families of cones relative to these structures. The result (Theorem 1) is then used to axiomatize pseudo-Euclidean geometry.

1

Let G be a 3-dimensional connected simply-connected solvable Lie group, and

(1)
$$\alpha_i : G \to \mathrm{Aff}(\mathbb{R}^3), \qquad i = 1, 2,$$

a simply transitive affine action of G on \mathbb{R}^3 . Here $\mathrm{Aff}(\mathbb{R}^3)$ means the group of all affine transformations of a 3-dimensional arithmetical space. The actions α_1 and α_2 are called affinely conjugate if there exists an affine bijection $A \colon \mathbb{R}^3 \to \mathbb{R}^3$ such that $\alpha_1(g) = A \circ \alpha_2(g) \circ A^{-1}$ for every $g \in G$.

By a left-invariant affine structure on G is meant a smooth structure for which all the transition functions and left translations, expressed in terms of coordinates, extend to transformations in $Aff(\mathbb{R}^3)$. The simply transitive affine action (1) determines a complete left-invariant affine structure \mathcal{A}_i on the group G. Indeed, consider the diffeomorphisms

$$\varphi_i \colon G \to \mathbb{R}^3$$
, $G \ni g \xrightarrow{\varphi_i} \alpha_i(g)(e) = x(i) = (x^1, x^2, x^3)$,

i=1,2, where $e\in\mathbb{R}^3$ is a fixed point. The numbers x^1,x^2,x^3 constitute an affine coordinate system on \mathbb{R}^3 . They can therefore be used as affine coordinates $\mu_i\colon g\to (x^1,x^2,x^3)$ on G.

Two affine structures \mathscr{A}_1 and \mathscr{A}_2 on G are called *equivalent* if there exists an affine bijection $A \colon \mathbb{R}^3 \to \mathbb{R}^3$ such that the coordinate systems $G \stackrel{\mu_1}{\to} \mathbb{R}^3$ and $G \stackrel{\mu_2}{\to} \mathbb{R}^3$, belonging to \mathscr{A}_1 and \mathscr{A}_2 , respectively, satisfy the equality $\mu_2 \circ \mu_1^{-1} = A$.

Proposition. Two left-invariant affine structures on a Lie group G, given by affine actions α_1 , α_2 , are equivalent if and only if the actions are affinely conjugate.

Consider on the group G a left-invariant partial order \leq , determining the family of subsets $\mathfrak{P} = \{P_x : x \in G\}$, where $P_x = \{y \in G : x \leq y\}$. It induces [4] a partial order on \mathbb{R}^3 , given by the family of subsets

$$\mathfrak{P}_i = \varphi_i(\mathfrak{P}) = \{ \varphi_i(P_g) \colon P_g \in \mathfrak{P} \}.$$

¹⁹⁹¹ Mathematics Subject Classification. Primary 53C50; Secondary 83A05.

The order \mathfrak{P}_i is $\alpha_i(G)$ -invariant; i.e., putting $P_{ix(i)} = \varphi_i(P_g)$, where $x(i) = \varphi_i(g)$, we have

$$\alpha_i(h)(P_{ix(i)}) = P_{i\alpha_i(h)(x(i))}$$

for every $h \in G$.

Consider the diffeomorphism

$$f = \varphi_2 \circ \varphi_1^{-1} \colon \mathbb{R}^3 \to \mathbb{R}^3.$$

Clearly, $f(P_{1x(1)}) = P_{2f(x(1))}$ for every point $x(1) \in \mathbb{R}^3$.

A complete left-invariant affine structure \mathscr{A} , induced by an action α on G, is called *normal* if in it the left translations L_a , where a is an element of a maximal abelian subgroup, have the form of parallel displacements: $[L_a(x)]^k = x^k + a^k$, k = 1, 2, 3. The corresponding simply transitive action α is also called normal.

Theorem 1. Suppose the action α_1 is normal, and \mathfrak{P}_1 and \mathfrak{P}_2 consist of elliptical cones. Then the actions α_1 and α_2 are affinely conjugate, the corresponding left-invariant affine structures \mathscr{A}_1 and \mathscr{A}_2 are affinely equivalent, and the mapping (2) is an affine bijection.

2. Axiomatization of pseudo-Euclidean geometry

Our object in this section is to single out the 3-dimensional pseudo-Euclidean space $_1E^3$ of signature $\langle +--\rangle$ from among all affinely ordered homogeneous affine Lorentz manifolds. Our approach is based on the idea of constructing a synthetic theory of Lorentz manifolds, as outlined in [1].

Notation. $\Pi(3)$ is the group of isometries of the space $_1E^3$. We shall call it the Poincaré group.

Taking into account the theory of homogeneous spaces and Lie groups, we replace the problem of axiomatizing a homogeneous Lorentz manifold by that of axiomatizing (on the basis of the idea of partial order) the Lorentz Lie group G_3 , i.e., a connected simply-connected solvable Lie group, supplied with a left-invariant Lorentz metric.

Axiomatizing the group G_3 together with a complete left-invariant affine structure on it amounts to solving in succession the following two problems:

- 1) Provide an abstract group G with a complete left-invariant affine structure.
- 2) Define on G a Lorentz metric g without using the notion of smooth tensor field.

The first problem was solved by V. K. Ionin [2], [3]. A structure of simply-connected affine manifold on an abstract group G is a structure of the form $\langle G, \Gamma, \Phi, \Psi \rangle$, where Γ is the set of all affine transformations of the real line \mathbb{R} , while the sets $\Phi \subset G^{\mathbb{R}}$ and $\Psi \subset \mathbb{R}^G$ satisfy the following conditions:

- (AII) For every $\varphi \in \Phi$ and $\psi \in \Psi$, the composite $\psi \circ \varphi$ belongs to Γ .
- (AI2) Φ is maximal; i.e., if $f: \mathbb{R} \to G$ but $f \notin \Phi$, then there exists a $\psi \in \Psi$ such that $\psi \circ f \notin \Gamma$.
- (AI3) Ψ is maximal; i.e., if $f: G \to \mathbb{R}$ but $f \notin \Psi$, then there exists a $\varphi \in \Phi$ such that $f \circ \varphi \notin \Gamma$.
 - (AI4) If $x, y \in G$, then there exists a $\varphi \in \Phi$ such that $x, y \in \varphi(\mathbb{R})$.
 - (AI5) If $x, y \in G$, $x \neq y$, then there exists a $\psi \in \Psi$ such that $\psi(x) \neq \psi(y)$.

In these terms, an affine transformation $h: G \to G$ is defined as a mapping such that $\psi \circ h \circ \varphi \in \Gamma$ for all $\varphi \in \Phi$ and $\psi \in \Psi$.

The set $\{\varphi(\mathbb{R})\colon \varphi\in\Phi_0\}$, where $\Phi_0\subset\Phi$ is the subset of nonconstant mappings, is by definition the set of lines in G. A ray with origin $x\in G$ is a set $\varphi(\mathbb{R}_+)$, where $\varphi\in\Phi_0$, $\mathbb{R}_+=\{t\in\mathbb{R}\colon t\geq 0\}$, and $\varphi(0)=x$.

The dimension $\dim G$ of the affine structure is defined in a natural fashion (see [2]).

An affine structure $\langle G, \Gamma, \Phi, \Psi \rangle$ is left-invariant if every left translation $L_a: x \to ax$ is an affine transformation.

A left-invariant *n*-dimensional affine structure (G, Γ, Φ, Ψ) is called *normal* if for every $x, y \in G$ and $t \in T$, where T is a maximal abelian subgroup of G, there exists a unique $z \in G$ such that $\psi(z) - \psi(y) = \psi(L_t(x)) - \psi(x)$ for all $\psi \in \Psi$.

A point $a \in M \subset G$, where G is supplied with an affine structure, is called *interior* for M if for every $\varphi \in \Phi_0$ such that $a \in \varphi(\mathbb{R})$ there exist $\alpha, \beta \in \mathbb{R}$, $\alpha \neq \beta$, such that $a \in \varphi((\alpha, \beta))$ and $\varphi((\alpha, \beta)) \subset M$. The set of interior points for M will be denoted by $\mathrm{int} M$.

The second problem is what we now solve, in the following way. Let G be an abstract group, supplied with a left-invariant affine structure $\langle G, \Gamma, \Phi, \Psi \rangle$. Suppose given on G a left-invariant order $\mathfrak{P} = \{P_x : x \in G\}$ satisfying the following conditions:

- (AP1) The set $P \equiv P_e$, where e is the group identity, is a cone with vertex e, i.e., the union of rays with vertex e.
- (AP2) The affine hull of the set P, i.e., the union of all the lines intersecting P in at least two points, coincides with G.
 - (AP3) The set P is closed; i.e., all points of the set $G \setminus P$ are interior.
- (AP4) The cone P is elliptical; i.e., for any two points $x, y \in P$, $x, y \neq e$, $x \neq y$, that are not interior points for P, there exists an affine transformation $f \in Aff(G)$ such that f(e) = e, f(P) = P, and f(x) = y.
- (AP5) The group $\operatorname{Aut}(\mathfrak{P})_e$ acts transitively on $\operatorname{int} P$; here $\operatorname{Aut}(\mathfrak{P})_e$ means the stabilizer at e of the group $\operatorname{Aut}(\mathfrak{P})$ of all order automorphisms, i.e., all bijections $f \colon G \to G$ such that $f(P_x) = P_{f(x)}$.

Theorem 2. Let G be an abstract group, supplied with a left-invariant normal affine 3-dimensional structure $\langle G, \Gamma, \Phi, \Psi \rangle$ and a left-invariant order \mathfrak{P} , satisfying conditions (AP1)–(AP5). Then G admits the structure of a connected simply-connected solvable Lie group with a left-invariant complete affine structure induced by the Ionin structure $\langle G, \Gamma, \Phi, \Psi \rangle$ and a left-invariant flat Lorentz metric g such that, in some global affine coordinates x_1, x_2, x_3 ,

(3)
$$P_x = \left\{ (z_1, z_2, z_3) \in \mathbb{R}^3 : \sum_{\substack{i,j=1\\x=(x_1, x_2, x_3)}}^3 g_{ij}(z_i - x_i)(z_j - x_j) \ge 0 \text{ and } z_i \ge x_i \right\},$$

(4)
$$g_x(\xi, \eta) = g_{ij} \cdot \xi^i \eta^j, \qquad g_{ij} = \text{const.}$$

Consequently, the order \mathfrak{P} is causal with respect to the metric g, i.e., any vector ξ issuing from a point x and lying in the cone P_x is nonspacelike at x with respect to g, and G is a simply transitive subgroup of the Poincaré group $\Pi(3)$.

Thus, Theorem 2 singles out those groups that on the one hand admit a pseudo-Euclidean geometry, but on the other hand are such that a metric for this geometry in a global affine chart must induce a relativistic causal order (3), (4). The group, affine, and order structures on G that are linked together by the axioms (AI1)-(AI5) and (AP1)-(AP5) determine, manifestly, a pseudo-Euclidean geometry on G with no requirement that G be abelian. If G is a priori not abelian, then the abelian subgroup necessarily acting on G in a simply transitive fashion (and therefore also

carrying a pseudo-Euclidean structure) can be extracted from the group $Aut(\mathfrak{P})$, which coincides with the semidirect product $\Pi(3) \times \{\text{homotheties}\}$.

We see, therefore, that a pseudo-Euclidean geometry on a group is not as strongly connected with the group's being abelian as was tacitly supposed in previous studies in the axiomatic theory of relatively (see the survey [4]).

BIBLIOGRAPHY

- 1. N. R. Abdrakhimova, A. K. Guts, and N. L. Shalamova, Dokl. Akad. Nauk SSSR 303 (1988), 777-781; English transl. in Soviet Math. Dokl. 38 (1989).
- 2. V. K. Ionin, Geometry Collection, no. 23 (R. N. Shcherbakov, editor), Tomsk. Gos. Univ., Tomsk, 1982, pp. 3-16. (Russian)
- 3. V. K. Ionin, Trudy Inst. Mat. (Novosibirsk) 9 (1987), 66-84. (Russian)
- 4. A. K. Guts, Uspekhi Mat. Nauk 37 (1982), no. 2 (224), 39-79; English transl. in Russian Math. Surveys 37 (1982).

OMSK STATE UNIVERSITY

Received 3/FEB/93

Translated by J. A. ZILBER