Математические структуры и моделирование 2021. № 1(57). С. 64-80

АЛГОРИТМ РАСЧЁТА ЭЛЕКТРОМАГНИТНОГО ПОЛЯ В МОДЕЛИ ВЕРТИКАЛЬНО НЕОДНОРОДНОЙ ПРОВОДЯЩЕЙ СРЕДЫ

С.А. Терентьев

к.ф.-м.н., доцент, e-mail: sa.terentyev@gmail.com **А.К. Гуц** д.ф.-м.н., профессор, e-mail: guts@omsu.ru

Омский государственный университет им. Ф.М. Достоевского, Омск, Россия

Аннотация. В настоящей работе предложены и обоснованы алгоритмы расчёта электромагнитного поля в вертикальнонеоднородных проводящих средах на основе деформации пути интегрирования в комплексную плоскость в представлении Фурье–Бесселя. Эти алгоритмы были использованы при разработке программ расчёта электромагнитного поля для ряда моделей среды и источников поля.

Ключевые слова: электроразведка, электромагнитное поле вертикального электрического или магнитного диполя, быстроосцилирующие интегралы, деформация контура, комплексная плоскость, отсутствие особых точек, область деформации.

Введение

Электромагнитные методы представляют несомненный интерес в самых разнообразных прикладных исследованиях (геофизические методы изучения земной коры, анализ систем связи и т. д.). Традиционная модель среды, всесторонне представленная в обширной литературе, — это модель горизонтальнослоистой среды. В ряде случаев определённый интерес представляет более общая модель — модель вертикальнонеоднородной среды, в которой параметры $(\sigma, \varepsilon, \mu)$ являются функциями глубины. Поэтому совершенствование алгоритмов расчёта электромагнитного поля в этих моделях среды является актуальной задачей.

Главным элементом алгоритма расчёта электромагнитного поля в таких моделях является деформация пути интегрирования в комплексной плоскости переменной интегрирования в представлении Фурье–Бесселя. Следовательно, необходимо установить аналитичность подынтегральной функции в области деформации. Описанию и обоснованию таких алгоритмов посвящён ряд работ [1]–[7]. Наиболее полное решение задачи дано в [6]. Полученные результаты легко переносятся на модели с непроводящим и бесконечно проводящим полупространствами, на случай цилиндрически- и сферическинеоднородной среды. В первом разделе настоящей работы приводятся операторная и вариационная формулировки задачи о поле диполя той или иной ориентации в вертикальнонеоднородной среде, формулируется результат об области аналитичности спектральной плоскости в представлении Фурье–Бесселя, даются формулы для расчёта электромагнитного поля ([6] и [7, § 1]).

Во втором разделе приводится алгоритм расчёта электромагнитного поля в вертикальнонеоднородной проводящей среде, основанный на деформации пути в комплексной плоскости переменной интегрирования и применении квадратурных формул наивысшей алгебраической степени точности. Полученные результаты используются при вычислении электромагнитного поля источников различной конфигурации в горизонтальнослоистой среде [7, § 2].

1. Электромагнитное поле диполя в вертикальнонеоднородной проводящей среде

1.1. Постановка задачи. Область аналитичности спектральной плоскости

Уравнения Максвелла имеют вид:

$$rot \mathbf{E} = \frac{\partial \mathbf{B}}{\partial t} - \mathbf{j}^{m,c\tau},$$

$$rot \mathbf{H} = \sigma \mathbf{E} + \frac{\partial \mathcal{D}}{\partial t} + \mathbf{j}^{e,c\tau},$$

$$div \mathcal{D} = \rho^{e,c\tau},$$

$$div \mathbf{B} = \rho^{m,c\tau},$$

где $\mathbf{j}^{e,c\tau}$ и $\mathbf{j}^{m,c\tau}$ — векторы объёмной плотности электрического и магнитного сторонних токов, которые возбуждаются полями, не учитываемые в искомом электромагнитном поле;

 $\rho^{e,{\rm ct}},\rho^{m,{\rm ct}}$ – объёмные плотности электрического и магнитного сторонних зарядов;

 σ, ε, μ — проводимость, диэлектрическая и магнитная проводимости среды, являющиеся функциями глубины z и, вообще говоря, с учётом решения вариационных задач (1.10) кусочно непрерывными.

Принимаем, что

$$\mathcal{D} = \varepsilon \mathbf{E}, \ \mathbf{B} = \mu \mathbf{H}.$$

Будем изучать гармонические источники и поля, т. е. предполагаем следующую зависимость от времени:

$$\mathbf{M} \to \mathbf{M} e^{i\omega t}$$
.

Тогда уравнения (1.1), с учётом (1.2), (1.3), примут вид:

$$rot \mathbf{E} = i\omega\mu\mathbf{H} - \mathbf{j}^{m,c\tau},\tag{1.1}$$

$$rot \mathbf{H} = (\sigma - i\omega\varepsilon)\mathbf{E} + \mathbf{j}^{e,c\tau}, \qquad (1.2)$$

$$div \ (\sigma - i\omega\varepsilon)\mathbf{E} = -div \ j^{e,c\tau} = -i\omega\rho^{e,c\tau},\tag{1.3}$$

$$div \ i\omega\mu\mathbf{H} = div \ j^{m,c\tau} = i\omega\rho^{m,c\tau}.$$
(1.4)

Пусть имеется неоднородная среда по оси z. Параметры среды σ, μ, ε будем считать функциями переменной z, т. е.

$$\sigma = \sigma(z), \quad \mu = \mu(z), \quad \varepsilon = \varepsilon(z).$$

 $\sigma, \mu, \varepsilon \in C^1(\mathbb{R})\;$ или кусочно гладкие,

$$\sigma(z) \neq 0$$
 при $z \in \mathbb{R}$.

Источник электромагнитного поля находится в точке с декартовыми координатами $(0, 0, z_0)$.

Далее будем совершать преобразования Фурье вида

$$\widehat{f}(\xi,\eta,\zeta) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y,z) e^{-i(\xi x + \eta y)} dx dy.$$

Из (1.1)-(1.4) нетрудно получить уравнения относительно спектральной плотности вертикальных компонент электромагнитного поля, а именно:

$$-\frac{d}{dz}\left\{\frac{1}{(\sigma-i\omega\varepsilon)}\frac{d}{dz}\left[(\sigma-i\omega\varepsilon)\widehat{E}_{z}+\widehat{j}_{z}^{e,c\tau}\right]\right\}+\frac{\lambda^{2}-k^{2}}{(\sigma-i\omega\varepsilon)}\left[(\sigma-i\omega\varepsilon)\widehat{E}_{z}+\widehat{j}_{z}^{e,c\tau}\right]=\\=\frac{d}{dz}\left\{\frac{1}{(\sigma-i\omega\varepsilon)}\left[i\xi\widehat{j}_{x}^{e,c\tau}+i\eta\widehat{j}_{y}^{e,c\tau}\right]\right\}+\frac{\lambda^{2}}{(\sigma-i\omega\varepsilon)}\widehat{j}_{z}^{e,c\tau}+i\eta\widehat{j}_{x}^{m,c\tau}-i\xi\widehat{j}_{y}^{m,c\tau},\quad(1.5)$$

$$-\frac{d}{dz}\left\{\frac{1}{i\omega\mu}\frac{d}{dz}\left[i\omega\mu\hat{H}_{z}-\hat{j}_{z}^{m,c\tau}\right]\right\}+\frac{\lambda^{2}-k^{2}}{i\omega\mu}\left[i\omega\mu\hat{H}_{z}-\hat{j}_{z}^{m,c\tau}\right]=$$
$$=-\frac{d}{dz}\left\{\frac{1}{i\omega\mu}\left[i\xi\hat{j}_{x}^{m,c\tau}+i\eta\hat{j}_{y}^{m,c\tau}\right]\right\}-\frac{\lambda^{2}}{i\omega\mu}\hat{j}_{z}^{m,c\tau}-i\eta\hat{j}_{x}^{e,c\tau}+i\xi\hat{j}_{y}^{e,c\tau},\qquad(1.6)$$

где $\lambda^2 = \xi^2 + \eta^2, \ k^2 = \omega^2 \varepsilon \mu + i \omega \mu \sigma.$

Остальные компоненты спектральной плотности выражаются через вертикальные. Например,

$$\widehat{E}_{x} = \frac{1}{\lambda^{2}} \left\{ \frac{i\xi}{(\sigma - i\omega\varepsilon)} \frac{d}{dz} \left[(\sigma - i\omega\varepsilon) \widehat{E}_{z} + \widehat{j}_{z}^{e,cr} \right] + i\eta \left[i\omega\mu\widehat{H}_{z} - \widehat{j}_{z}^{m,cr} \right] - \frac{\xi^{2} \widehat{j}_{x}^{e,cr} + \xi\eta \widehat{j}_{y}^{e,cr}}{(\sigma - i\omega\varepsilon)} \right\},$$
(1.7)

$$\widehat{E}_{y} = \frac{1}{\lambda^{2}} \left\{ \frac{i\eta}{(\sigma - i\omega\varepsilon)} \frac{d}{dz} \left[(\sigma - i\omega\varepsilon) \widehat{E}_{z} + \widehat{j}_{z}^{e, \mathrm{cr}} \right] - i\xi \left[i\omega\mu \widehat{H}_{z} - \widehat{j}_{z}^{m, \mathrm{cr}} \right] - i\xi \left[i\omega\mu \widehat{H}_{z} - \widehat{j}_{z}^{m, \mathrm{cr}} \right] \right\}$$

$$-\frac{\xi\eta\hat{j}_x^{e,c\tau} + \eta^2\hat{j}_y^{e,c\tau}}{(\sigma - i\omega\varepsilon)}\bigg\}.$$
(1.8)

Выражения для магнитных компонент могут быть получены из (1.7), (1.8) заменами $E \rightleftharpoons H$, $j^{e,c\tau} \rightleftharpoons -j^{m,c\tau}$, $(\sigma - i\omega\varepsilon) \rightleftharpoons i\omega\mu$.

Если в качестве источника поля рассматривать точечный диполь, то в правую часть уравнений (1.5), (1.6) будут входить δ -функция и её производная. Таким образом, в этом случае уравнения (1.5), (1.6) невозможно рассматривать в классическом смысле. В [6] показано, что задача о поле диполя может быть записана следующим образом:

$$-\frac{d}{dz}\left(\frac{1}{p(z)}\frac{du}{dz}\right) + \frac{q(z,\lambda)}{p(z)}u = 0, \quad (z \neq z_0)$$

$$[u]_{z_0} = \alpha,$$

$$\left[\frac{1}{p(z)}\frac{du}{dz}\right]_{z_0} = \beta,$$
(1.9)

где $[F]_{z_0} = F(z_0 + 0) - F(z_0 - 0).$ Здесь

$$\begin{split} q(\lambda,z) &= \lambda^2 - k^2, \\ u &= u^e \quad \text{или} \quad u^h, \quad p = p^e \quad \text{или} \quad p^h, \\ p^e &= (\sigma - i\omega\varepsilon), \ u^e = p^e \widehat{E}_z + \widehat{j}_z^{e,\text{ct}} = p^e (\widehat{E}_z + \widehat{E}_z^{\text{ct}}), \\ p^h &= i\omega\mu, \ u^h = p^h \widehat{H}_z - \widehat{j}_z^{m,\text{ct}} = p^h (\widehat{H}_z + \widehat{H}_z^{\text{ct}}). \end{split}$$

Приведём значения коэффициентов α, β задачи (1.9) для различных диполей, расположенных в точке $(0, 0, z_0)$.

Предполагается, что, вообще говоря, $1/p(z) \notin C(z_0)$.

1) Вертикальный электрический диполь:

$$\widehat{E}^{\text{ct.}} = (0, 0, \delta(z - z_0)), \quad \alpha^e = 0, \quad \beta^e = -\lambda^2,$$

 $\alpha^h = 0, \quad \beta^h = 0.$

2) Горизонтальный электрический диполь:

$$\begin{split} \widehat{j}^{e,\mathrm{ct.}} &= (\delta(z-z_0),0,0), \quad \alpha^e = -i\xi, \quad \beta^e = 0, \\ \alpha^h &= 0, \quad \beta^h = i\eta. \end{split}$$

3) Вертикальный магнитный диполь:

$$\begin{split} \widehat{H}^{\text{ct.}} &= (0,0,-\delta(z-z_0)), \quad \alpha^e = 0, \quad \beta^e = 0, \\ \alpha^h &= 0, \quad \beta^h = \lambda^2. \end{split}$$

4) Горизонтальный электрический диполь:

$$\alpha^e = 0, \quad \beta^e = -i\eta,$$

$$\widehat{j}^{m,\mathrm{ct.}}=(\delta(z-z_0),0,0),\quad \alpha^h=i\xi,\quad \beta^h=0.$$

В точках непрерывности функций p^e и p^h связь между сторонними э.д.с., э.м.с. и токами задаётся формулами:

$$E^{\text{ct.}} = \frac{j^{e,\text{ct.}}}{(\sigma - i\omega\varepsilon)}, \quad H^{\text{ct.}} = -\frac{j^{m,\text{ct.}}}{i\omega\mu}.$$

От операторной постановки задачи (1.9) нетрудно перейти к вариационной формулировке

$$r(u,\varphi) = \left(\int_{-\infty}^{z_0} + \int_{z_0}^{+\infty}\right) \left\{\frac{1}{p(z)} \frac{du}{dz} \frac{d\overline{\varphi}}{dz} + \frac{q(z,\lambda)}{p(z)} u\overline{\varphi}\right\} dz = -\beta\overline{\varphi}(z_0) = l(\varphi), \quad (1.10)$$
$$\forall \varphi \in W_2^1(\mathbb{R}, \mathbb{C}).$$

Слабые решения этой задачи ищем среди элементов замкнутого выпуклого множества $K_{\alpha} \subset W_2^1(\mathbb{R}^- + \mathbb{R}^+, \mathbb{C})$, определяемого условием: $[u]_{z_0} = \alpha$. При этом достаточно потребовать, чтобы коэффициенты

$$\frac{1}{p(z)}, \quad \frac{q(z,\lambda)}{p(z)} \in L^{\infty}(\mathbb{R},\mathbb{C})$$

в частности были кусочнонепрерывными и ограниченными.

Под $W_2^l(\mathbb{R}^- + \mathbb{R}^+, \mathbb{C})$ понимается замыкание в норме

$$||u|| = \left\{ \left(\int_{-\infty}^{z_0} + \int_{z_0}^{+\infty} \right) \sum_{i=0}^{l} \left| \frac{d^i u}{dz^i} \right|^2 dz \right\}^{1/2}$$

пространства функций $u : \mathbb{R} \to \mathbb{C}$, сужения которого на $\mathbb{R}^- = (-\infty, z_0)$ и $\mathbb{R}^+ = (z_0, +\infty)$ совпадают с соответствующими сужениями пространства $\mathcal{D}(\mathbb{R}, \mathbb{C})$ (или $W_2^l(\mathbb{R}, \mathbb{C})$).

Легко видеть, что в общем случае решение строится в виде линейной комбинации решений задач

$$r(v,\varphi) = l(\varphi), \quad \forall \varphi \in W_2^1(\mathbb{R},\mathbb{C}), \quad v \in K_\alpha,$$
 (1.11)

где $\alpha = 1, \beta = 0$ или $\alpha = 0, \beta = 1.$

,

При этом компоненты электромагнитного поля выражаются в форме линейной комбинации интегралов вида

$$\int_{0}^{+\infty} \frac{d^k v}{(pdz)^k} \lambda^l \frac{\partial^{m_1+m_2}}{\partial x^{m_1} \partial y^{m_2}} I_0(\lambda \sqrt{x^2 + y^2}) d\lambda.$$
(1.12)

Здесь $I_0(\cdot)$ — функция Бесселя,

$$k = 0, 1; \quad l = -1, 1, 3; \quad m_1 + m_2 = 0, 1, 2;$$
 $m_1 + m_2 \neq 0$ при $l = -1.$

В [6] установлено, что область

$$D_{\lambda} = \left\{ \lambda = \lambda_{x} + i\lambda_{y} : |\lambda| < \infty \land vrai \sup_{z} \left| \frac{1}{p(z)} \right| < \infty \land vrai \sup_{z} \left| \frac{q(z,\lambda)}{p(z)} \right| < \infty \land$$
$$\land vrai \inf_{z} \operatorname{inf} \operatorname{Re}\left(\frac{\gamma}{p(z)}\right) > 0 \land vrai \inf_{z} \operatorname{inf} \operatorname{Re}\left(\frac{\gamma q(z,\lambda)}{p(z)}\right) > 0 \right\}$$

где γ — произвольная, отличная от нуля комплексная константа, является областью существования, единственности и аналитичности по параметру λ при любом z решения залачи (1.11), и, следовательно, подынтегрального выражения в (1.12).

1.2. Представление электромагнитного поля для диполей

Обозначим v_0^e и v_1^e решения вариационных задач

$$\left(\int_{-\infty}^{z_0} + \int_{z_0}^{+\infty}\right) \left\{\frac{1}{(\sigma - i\omega\varepsilon)} \frac{dv}{dz} \frac{d\overline{\varphi}}{dz} + \frac{\lambda^2 - k^2}{(\sigma - i\omega\varepsilon)} u\overline{\varphi}\right\} dz = -\beta\overline{\varphi}(z_0), \quad (1.13)$$
$$\forall \varphi \in W_2^1(\mathbb{R}, \mathbb{C}), \quad v \in K_\alpha \subset W_2^1(\mathbb{R}^- + \mathbb{R}^+, \mathbb{C}), \quad [v]_{z_0} = \alpha$$

для $\alpha = 1, \beta = 0$ и $\alpha = 0, \beta = 1$ соответственно.

Аналогично обозначим v_0^h и v_1^h решения вариационных задач

$$\left(\int_{-\infty}^{z_0} + \int_{z_0}^{+\infty}\right) \left\{\frac{1}{i\omega\mu} \frac{dv}{dz} \frac{d\overline{\varphi}}{dz} + \frac{\lambda^2 - k^2}{(i\omega\mu)} u\overline{\varphi}\right\} dz = -\beta\overline{\varphi}(z_0), \quad (1.14)$$

$$\forall \varphi \in W_2^1(\mathbb{R}, \mathbb{C}), \quad v \in K_\alpha \subset W_2^1(\mathbb{R}^- + \mathbb{R}^+, \mathbb{C}), \quad [v]_{z_0} = \alpha$$

для $\alpha = 1, \beta = 0$ и $\alpha = 0, \beta = 1$ соответственно.

Если зависимость спектральной плотности от ξ и η является зависимостью от $\xi^2 + \eta^2$, то, используя обратное преобразование Фурье–Бесселя

$$\begin{split} f(x,y,z) &= \frac{1}{(2\pi)^2} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \widehat{f}(\xi,\eta,z) e^{i(\xi x + \eta y)} d\xi d\eta = \\ &= \frac{1}{2\pi} \int_{0}^{+\infty} \widehat{f}(\lambda,z) \lambda I_0(\lambda r) d\lambda, \\ \lambda^2 &= \xi^2 + \eta^2, \quad r = \sqrt{x^2 + y^2} \end{split}$$

и учитывая, что умножение спектральной плотности на $i\xi$ или $i\eta$ сводится к дифференцированиям оригинала $\frac{\partial}{\partial x}$ или $\frac{\partial}{\partial y}$ соответственно, получим представление электромагнитного поля диполей в вертикальнонеоднородной среде.

1.2.1. Вертикальный электрический диполь

Диполь здесь и ниже находится в точке (x_0, y_0, z_0) . Пусть $E^{\text{ст.}} = (0, 0, \delta(x - x_0)\delta(y - y_0)\delta(z - z_0)), H^{\text{ст.}} = 0$. Тогда при $(x, y, z) \neq (x_0, y_0, z_0)$ имеем

$$E_x = -\frac{1}{2\pi} \int_0^{+\infty} \lambda \left[\frac{1}{(\sigma - i\omega\varepsilon)} \frac{dv_1^e}{dz} \right] \frac{\partial}{\partial x} I_0(\lambda r) d\lambda,$$

$$E_y = -\frac{1}{2\pi} \int_0^{+\infty} \lambda \left[\frac{1}{(\sigma - i\omega\varepsilon)} \frac{dv_1^e}{dz} \right] \frac{\partial}{\partial y} I_0(\lambda r) d\lambda,$$

$$j_z^e = -\frac{1}{2\pi} \int_0^{+\infty} \lambda^3 v_1^e I_0(\lambda r) d\lambda,$$

$$H_x = -\frac{1}{2\pi} \int_0^{+\infty} \lambda v_1^e \frac{\partial}{\partial y} I_0(\lambda r) d\lambda,$$

$$H_y = \frac{1}{2\pi} \int_0^{+\infty} \lambda v_1^e \frac{\partial}{\partial x} I_0(\lambda r) d\lambda,$$

$$-j_z^m \equiv 0.$$
(1.15)

Здесь и ниже

$$r = \sqrt{(x - x_0)^2 + (y - y_0)^2}.$$

В точках непрерывности $\sigma - i\omega\varepsilon$ вертикальный электрический диполь может определиться сторонним током.

Для $j^{e, \text{ст.}} = (0, 0, \delta(x - x_0)\delta(y - y_0)\delta(z - z_0))$

$$j_z^{e,\text{ct.}} = -\frac{1}{2\pi(\sigma - i\omega\varepsilon)|_{z=z_0}} \int_0^{+\infty} \lambda^3 v_1^e I_0(\lambda r) d\lambda.$$

1.2.2. Горизонтальный электрический диполь

Пусть $j^{e,\text{ст.}} = (\delta(x-x_0)\delta(y-y_0)\delta(z-z_0), 0, 0), \ j^{m,\text{ст.}} = 0.$ Тогда при $(x,y,z) \neq (x_0,y_0,z_0)$ имеем

$$E_x = \frac{1}{2\pi} \int_{0}^{+\infty} \left\{ -\frac{1}{\lambda} \left[\frac{1}{(\sigma - i\omega\varepsilon)} \frac{dv_0^e}{dz} \right] \frac{\partial^2}{\partial x^2} I_0(\lambda r) + \frac{1}{\lambda} v_1^h \frac{\partial^2}{\partial y^2} I_0(\lambda r) \right\} d\lambda,$$
$$E_y = \frac{1}{2\pi} \int_{0}^{+\infty} \left\{ -\frac{1}{\lambda} \left[\frac{1}{(\sigma - i\omega\varepsilon)} \frac{dv_0^e}{dz} \right] \frac{\partial^2}{\partial x \partial y} I_0(\lambda r) - \frac{1}{\lambda} v_1^h \frac{\partial^2}{\partial x \partial y} I_0(\lambda r) \right\} d\lambda,$$

$$j_z^e = -\frac{1}{2\pi} \int_0^{+\infty} \lambda v_0^e \frac{\partial}{\partial x} I_0(\lambda r) d\lambda, \qquad (1.16)$$

$$\begin{split} H_x &= \frac{1}{2\pi} \int_0^{+\infty} \Biggl\{ -\frac{1}{\lambda} v_0^e \frac{\partial^2}{\partial x \partial y} I_0(\lambda r) + \frac{1}{\lambda} \left[\frac{1}{i\omega\mu} \frac{dv_1^h}{dz} \right] \frac{\partial^2}{\partial x \partial y} I_0(\lambda r) \Biggr\} d\lambda, \\ H_y &= \frac{1}{2\pi} \int_0^{+\infty} \Biggl\{ +\frac{1}{\lambda} v_0^e \frac{\partial^2}{\partial x^2} I_0(\lambda r) + \frac{1}{\lambda} \left[\frac{1}{i\omega\mu} \frac{dv_1^h}{dz} \right] \frac{\partial^2}{\partial y^2} I_0(\lambda r) \Biggr\} d\lambda, \\ &- j_z^m = \frac{1}{2\pi} \int_0^{+\infty} \lambda v_1^h \frac{\partial}{\partial y} I_0(\lambda r) d\lambda. \end{split}$$

Формулы для горизонтального электрического диполя, направленного вдоль оси *у*, могут быть получены из предыдущих поворотом системы координат.

1.2.3. Вертикальный магнитный диполь

Пусть $E^{\text{ст.}} = 0, \ H^{\text{ст.}} = (0,0,-\delta(x-x_0)\delta(y-y_0)\delta(z-z_0)).$ Тогда при $(x,y,z) \neq (x_0,y_0,z_0)$ имеем

$$E_x = \frac{1}{2\pi} \int_{0}^{+\infty} \lambda v_1^h \frac{\partial}{\partial y} I_0(\lambda r) d\lambda,$$

$$E_y = -\frac{1}{2\pi} \int_{0}^{+\infty} \lambda v_1^h \frac{\partial}{\partial x} I_0(\lambda r) d\lambda,$$

$$j_z^e \equiv 0, \qquad (1.17)$$

$$H_x = \frac{1}{2\pi} \int_{0}^{+\infty} \lambda \left[\frac{1}{i\omega\mu} \frac{dv_1^h}{dz} \right] \frac{\partial}{\partial x} I_0(\lambda r) d\lambda,$$

$$H_y = \frac{1}{2\pi} \int_{0}^{+\infty} \lambda \left[\frac{1}{i\omega\mu} \frac{dv_1^h}{dz} \right] \frac{\partial}{\partial y} I_0(\lambda r) d\lambda,$$

$$-j_z^m = \frac{1}{2\pi} \int_{0}^{+\infty} \lambda^3 v_1^h I_0(\lambda r) d\lambda.$$

В точках непрерывности $i\omega\mu$ вертикальный магнитный диполь может определиться сторонним магнитным током. Для $j^{m,ct.} = (0, 0, \delta(x-x_0)\delta(y-y_0)\delta(z-z_0))$ выражение (1.17) надо разделить на $(i\omega\mu)|_{z=z_0}$).

1.2.4. Горизонтальный магнитный диполь

Пусть $j^{e,\text{ст.}}=0,~j^{m,\text{ст.}}=(\delta(x-x_0)\delta(y-y_0)\delta(z-z_0),0,0,).$ Тогда при $(x,y,z)\neq(x_0,y_0,z_0)$ имеем

$$E_{x} = \frac{1}{2\pi} \int_{0}^{+\infty} \left\{ -\frac{1}{\lambda} \left[\frac{1}{(\sigma - i\omega\varepsilon)} \frac{dv_{1}^{e}}{dz} \right] \frac{\partial^{2}}{\partial x \partial y} I_{0}(\lambda r) + \frac{1}{\lambda} v_{0}^{h} \frac{\partial^{2}}{\partial x \partial y} I_{0}(\lambda r) \right\} d\lambda,$$

$$E_{y} = \frac{1}{2\pi} \int_{0}^{+\infty} \left\{ -\frac{1}{\lambda} \left[\frac{1}{(\sigma - i\omega\varepsilon)} \frac{dv_{1}^{e}}{dz} \right] \frac{\partial^{2}}{\partial y^{2}} I_{0}(\lambda r) - \frac{1}{\lambda} v_{0}^{h} \frac{\partial^{2}}{\partial x^{2}} I_{0}(\lambda r) \right\} d\lambda,$$

$$j_{z}^{e} = -\frac{1}{2\pi} \int_{0}^{+\infty} \lambda v_{1}^{e} \frac{\partial}{\partial y} I_{0}(\lambda r) d\lambda,$$

$$H_{x} = \frac{1}{2\pi} \int_{0}^{+\infty} \left\{ -\frac{1}{\lambda} v_{1}^{e} \frac{\partial^{2}}{\partial y^{2}} I_{0}(\lambda r) + \frac{1}{\lambda} \left[\frac{1}{i\omega\mu} \frac{dv_{0}^{h}}{dz} \right] \frac{\partial^{2}}{\partial x^{2}} I_{0}(\lambda r) \right\} d\lambda,$$

$$H_{y} = \frac{1}{2\pi} \int_{0}^{+\infty} \left\{ +\frac{1}{\lambda} v_{1}^{e} \frac{\partial^{2}}{\partial x \partial y} I_{0}(\lambda r) + \frac{1}{\lambda} \left[\frac{1}{i\omega\mu} \frac{dv_{0}^{h}}{dz} \right] \frac{\partial^{2}}{\partial x \partial y} I_{0}(\lambda r) \right\} d\lambda,$$

$$-j_{z}^{m} = \frac{1}{2\pi} \int_{0}^{+\infty} \lambda v_{0}^{h} \frac{\partial}{\partial x} I_{0}(\lambda r) d\lambda.$$

Формулы для горизонтального электрического диполя, направленного вдоль оси y, могут быть получены из предыдущих поворотом системы координат.

2. Алгоритм расчёта электромагнитного поля

Излагаемый ниже алгоритм был разработан в 1980-е для маломощных ЭВМ и представлен в малодоступном научно-техническом отчёте [7]. Современные ЭВМ, удалённый доступ к ним через интернет и использование облачных ресурсов, позволяют решать задачи расчёта электромагнитного поля, не задумываясь о производительности вычислительной техники. Тем не менее, как показывает жизнь, мы всегда можем оказаться в ситуации, когда скоростные мощности станут недоступными, а от решения задач, изложенных в статье, нас никто не освободит.

Но дело не только в производительности ЭВМ, а, главным образом, в быстроосциллирующих подынтегральных выражениях в интегралах, посредством которых вычисляется электромагнитное поле. Подобные выражения мешают точным вычислениям полей на ЭВМ, приводя к ошибкам. Именно на устранение проблемы быстроосциллирующих выражений и нацелена данная статья. Поэтому публикация «устаревшего» алгоритма, отличного от обычно применяемых методов интегрирования быстроосциллирующих функций не утрачивает своей актуальности: любые алгоритмы во все времена могут оказаться полезными.

2.1. Вычисление спектральной плотности

В случае горизонтальнослоистой среды при постоянных значениях параметров (σ, ε, μ) каждого слоя вариационные задачи (1.13), (1.14) могут быть решены точно. Методы построения решений в этом случае хорошо известны [8]. При наличии большого количества границ раздела нет смысла выписывать решения явно. Значительно удобнее строить их численно методом встречной прогонки [12]. Если число границ раздела невелико, то решения можно выписать явно. Например, в [1] приведены формулы для случая двух горизонтальных границ раздела. Связь между функциями f_l^m в [1] и функциями v_0 , v_1 настоящей статьи в случае горизонтальнослоистой среды определяется следующим образом:

$$v_1 = -\gamma_l f_l^m, \quad v_0 = \frac{\gamma_l}{\gamma_m} \frac{d}{dz_0} f_l^m = -\frac{1}{\gamma_m} \frac{dv_1}{dz_0}.$$
 (2.1)

Здесь

т — номер слоя, содержащего источник;

l — номер слоя, в котором находится точка измерения;

 $\gamma = (\sigma - i\omega\varepsilon)$ — для *E*-моды;

 $\gamma = i\omega\mu -$ для *H*-моды.

При произвольной зависимости параметров среды от глубины решения v_0 и v_1 задач (1.13), (1.14) строятся численно. Наиболее удобным методом решения этих задач является вариационно-разностный метод (типа метода конечных элементов). Учитывая, что значение $|\lambda^2 - k^2|h^2$, где h — шаг сетки, может быть достаточно большим, необходимо вместо полиномиальных сплайнов использовать сплайны специального вида, являющиеся свёртками экспонент [10]. Параметры экспонент выбираются таким образом, чтобы они были «локально близки» к решению задачи. Другой подход заключается в замене исходной модели моделью горизонтальнослоистой среды.

2.2. Алгоритм численного преобразования Фурье-Бесселя

В настоящем разделе приводится основной результат работы — алгоритм численного интегрирования (1.15) – (1.18). Качество и быстродействие программ расчёта электромагнитного поля источников различной конфигурации определяется в первую очередь тем, насколько рационально удаётся организовать численное преобразование Фурье-Бесселя. При этом считается нежелательным увеличение количества программируемых выражений за счёт разного рода асимптотических разложений. К этому побуждают ограниченность объёма оперативной памяти ЭВМ и неуниверсельность такого подхода.

Ниже описывается сравнительно однотипный алгоритм вычисления интеграла вида (1.12) в случае вертикальнонеоднородной проводящей среды в квазистационарном приближении ($\omega \varepsilon \approx 0$).

В основу этого алгоритма положен результат, приведённый в § 1. В квазистационарном приближении область D_{λ} , показанная на рис. 2.1, является областью аналитичности подынтегральных выражений в представлении Фурье-Бесселя для электромагнитного поля дипольных источников.

Рис. 1. Лист римановой поверхности, определяемый условиями $Re\lambda_j \ge 0$ (j = 1, 2, 3), $D_{\lambda} = \{\lambda = \lambda_x + i\lambda_y : |\lambda_x| > |\lambda_y|\}$

Учитывая, что

 $\overline{\partial}$

$$\frac{\partial}{\partial x}I_0(\lambda r) = -\lambda\cos(\chi)I_1(\lambda r),$$

$$\frac{\partial}{\partial y}I_0(\lambda r) = -\lambda\sin(\chi)I_1(\lambda r),$$

$$\frac{\partial^2}{\partial x^2}I_0(\lambda r) = -\frac{\lambda^2}{2}[I_0(\lambda r) - \cos(2\chi)I_2(\lambda r)],$$

$$\frac{\partial^2}{\partial y^2}J_0(\lambda r) = -\frac{\lambda^2}{2}[I_0(\lambda r) + \cos(2\chi)I_2(\lambda r)],$$

$$\frac{\partial^2}{\partial x\partial y}I_0(\lambda r) = \frac{\lambda^2}{2}\sin(2\chi)I_2(\lambda r),$$

(2.2)

где χ — угол между осью x и направлением на точку измерения $\overline{r} = (x - x_0, y - y_0)$ в плоскости xOy, получаем, что выполнение преобразования сводится к вычислению серии интегралов вида

$$\int_{0}^{+\infty} \Phi(\lambda) e^{-\lambda Z} I_m(\lambda r) d\lambda.$$
(2.3)

Например, в среде с двумя горизонтальными границами раздела магнитное поле (компонента H_x) горизонтального электрического диполя $j^{e, cr.} =$

$$= (\delta(x-x_0) imes \delta(y-y_0) \delta(z-z_0), 0, 0)$$
 имеет вид

$$H_{x} = \frac{\sin(2\chi)}{2\pi} \int_{0}^{+\infty} \left\{ \lambda \left[\frac{-\sigma_{2}\lambda_{1}\sigma_{3}\lambda_{2}}{(\sigma_{2}\lambda_{1} + \sigma_{1}\lambda_{2})(\sigma_{2}\lambda_{3} + \sigma_{3}\lambda_{2})(1 - \lambda_{12}^{e}\lambda_{32}^{e}e^{-2\lambda_{2}h})} + \frac{\mu_{2}\lambda_{3}\mu_{1}\lambda_{2}}{(\mu_{2}\lambda_{1} + \mu_{1}\lambda_{2})(\mu_{2}\lambda_{3} + \mu_{3}\lambda_{2})(1 - \lambda_{12}^{h}\lambda_{32}^{h}e^{-2\lambda_{2}h})} \right] \times$$

$$\times e^{\lambda(z-z_{0})-\lambda_{1}(z_{1}-z_{0})-\lambda_{2}h-\lambda_{3}(z-z_{2})} \bigg\} e^{-\lambda(z-z_{0})}I_{2}(\lambda r)d\lambda.$$

$$(2.4)$$

Здесь

 z_1, z_2 — координаты границ раздела; источник находится в среде с параметрами (σ_1, μ_1), т. е. $z \leq z_1$;

точка измерения находится в среде с параметрами (σ_3, μ_3), т. е. $z \ge z_2$; $h = z_2 - z_1 -$ толщина промежуточного слоя; $\lambda_j = (\lambda^2 - i\sigma_j\omega\mu_j)^{1/2}, \quad Re\lambda_j \ge 0;$ $\lambda_{il}^e = (\sigma_l\lambda_i - \sigma_j\lambda_l)/(\sigma_l\lambda_i + \sigma_j\lambda_l);$

$$\lambda_{il}^{h} = (\mu_l \lambda_i - \mu_j \lambda_l) / (\mu_l \lambda_i + \mu_j \lambda_l).$$

На рис. 2.1 представлен лист римановой поверхности, определяемый условиями $Re\lambda_i \ge 0$ (j = 1, 2, 3), для подынтегральной функции (2.4).

Как показано в [9,13], особые точки этой функции (наряду с указанными на рис. 2.1 точками ветвления) могут находиться только в заштрихованной области. В общем случае гарантируется аналитичность подынтегральной функции в D_{λ} , причём с точки зрения предлагаемого алгоритма этого вполне достаточно. Поэтому алгоритм не зависит от конкретизации модели вертикальнонеоднородной среды.

Итак, рассмотрим алгоритм вычисления интеграла вида (2.3). Разобьём интервал интегрирования на два участка:

$$\int_{0}^{+\infty} = \int_{0}^{\lambda_0} + \int_{\lambda_0}^{+\infty}, \qquad (2.5)$$

где

$$\lambda_0 = \frac{c_1}{\sqrt{Z^2 + r^2}}, \quad c_1 \sim 10^0.$$

Если $r \leq Z$, то во втором интеграле в правой части (2.5) основным фактором является экспоненциальный множитель. Так как расстояние от пути интегрирования до границы области D_{λ} , вне которой расположены особые точки подынтегральной функции, по порядку величины сравнимо с длиной характерного изменения экспоненциального множителя, то их влияние на «гладкость» подынтегральной функции игнорируется. Поэтому интегрирование по пути $[\lambda_0, +\infty)$ в этом случае можно осуществить по квадратурной формуле наивысшей алгебраической степени точности с весом $e^{-\lambda Z}$ (формула Лагерра). При $r \ge Z$ этот подход неприемлем, так как осциллирующий фактор $I_m(\lambda r)$ превалирует над экспоненциальным. Представим второй интеграл правой части (2.5) в виде суммы двух интегралов

$$\int_{\lambda_0}^{+\infty} \Phi(\lambda) e^{-\lambda Z} I_m(\lambda r) d\lambda =$$

$$= \frac{1}{2} \left\{ \int_{\lambda_0}^{+\infty} \Phi(\lambda) e^{-\lambda Z} H_m^{(1)}(\lambda r) d\lambda + \int_{\lambda_{\lambda_0}}^{+\infty} \Phi(\lambda) e^{-\lambda Z} H_m^{(2)}(\lambda r) d\lambda \right\}$$
(2.6)

и рассмотрим первый из них. Деформируем пути интегрирования в верхнюю полуплоскость (рис. 2.1)

$$\lambda = \lambda_0 + (1+i)s, \quad s \in [0, +\infty).$$

$$(2.7)$$

Такая деформация пути не выводит его из области аналитичности подынтегральной функции. Так как для рассматриваемого интеграла в верхней полуплоскости выполнены условия леммы Жордана [11], то его значение не меняется. Учитывая, что при $|\lambda r| \gg 1$

$$H_m^{(1)}(\lambda r) \sim \frac{const}{\sqrt{\lambda r}} e^{i\lambda r}$$

получаем

$$e^{-\lambda Z} H_m^{(1)}(\lambda r) \sim \frac{const}{\sqrt{\lambda r}} e^{-\lambda_0 Z + i\lambda_0 r} \cdot e^{-s(r+Z) + is(r-Z)},$$
(2.8)

т. е. экспоненциальный фактор становится превалирующим над осциллирующим при любом соотношении между r и Z. С другой стороны, расстояние от пути интегрирования до границы области D_{λ} остаётся сопоставимым по порядку величины с длиной характерного изменения экспоненциального множителя. Поэтому вычисление этого интеграла можно осуществить по квадратурной формуле наивысшей алгебраической степени точности с весом $e^{-s(r+Z)}$ (формула Лагерра).

Аналогичным образом можно поступить и со вторым слагаемым в (2.6), деформируя путь интегрирования в нижнюю полуплоскость

$$\lambda = \lambda_0 + (1 - i)s, \quad s \in [o, +\infty).$$
(2.9)

Для сокращения числа обращений к подпрограммам вычисления функций Ханкеля следует учесть симметричность расположения узлов квадратурных формул на линиях (2.7), (2.9) и соотношение

$$H_m^{(2)}(\overline{\lambda}r) = H_m^{(1)}(\lambda r).$$

В принципе, эта процедура может быть применена и при r < Z. Но, во-первых, при малых значениях r/Z функции Ханкеля $H_m^{(1)}(\lambda r)$, $H_m^{(2)}(\lambda r)$ ведут себя «достаточно нерегулярно» в окрестности 0 (большие значения производных не

определены при r = 0). Во-вторых, вычисление подынтегральных функций в паре комплексно сопряжённых точек $\lambda, \overline{\lambda}$ на линиях (2.7), (2.9) требует значительно больших затрат машинного времени. Поэтому при $r \leq Z$ предпочтительнее интегрировать вдоль вещественной оси.

Рассмотрим теперь метод численного интегрирования дли отрезка $[0, \lambda_0]$. В силу выбора значения λ_0 влияние экспоненциального и осциллирующего факторов $e^{-Z}I_m(\lambda r)$ можно игнорировать. Таким образом, подходящая квадратурная формула определяется в первую очередь поведением функции $\Phi(\lambda)$, в частности расположением особых точек этой функции. Простейшей процедурой интегрирования, учитывающей это обстоятельство, является применение составного квадратурного правила с неравномерным разбиением на основе квадратурной формулы наивысшей алгебраической степени точности с постоянным весом (формула Гаусса). В качестве задающей разбиение в работе использовалась функция

$$\varphi(m,p) = \begin{cases} 0, & m = 0, \\ \lambda_0 c_2^{m-p}, & m = 1, ..., p. \end{cases}$$
(2.10)

Здесь

p — число разбиений отрезка;

т — номер точки разбиения;

 $c_2 > 1$ — константа ~ 10^0 .

Указанная функция близка к функции, задающей оптимальное разбиение [9], для следующего модельного интеграла

$$\int_{0}^{\lambda_{0}} \frac{d\lambda}{\sqrt{\lambda^{2} - \overline{k}^{2}}}, \quad |\overline{k}| \ll \lambda_{0}, \tag{2.11}$$

при условии $\varphi(1,p) = \lambda_0 c_2^{1-p} \sim c_2 |\overline{k}|.$

Так как с целью сокращения времени счёта одно и то же разбиение должно использоваться для вычисления всех компонент электромагнитного поля (их накопление осуществляется одновременно), то не может быть предложено единой вполне подходящей модели, определяющей разбиение, близкое к оптимальному во всех случаях. В то же время разбиение (2.10) характеризуется тем, что, исключая начальный отрезок, длина каждого отрезка разбиения сопоставима $(\sqrt{2}(c_2-1):1)$ с расстоянием от него до границы области D_{λ} , вне которой расположены особые точки подынтегральной функции. Поэтому указанное разбиение с этой точки зрения можно назвать удовлетворительным. Кроме того, оно позволяет лучше учесть влияние промежуточных слоев (экспоненты типа $e^{-2\lambda_2 h}$ в (2.4)), если значение константы c_2 в (2.10) не слишком велико и обеспечивает высокую относительную точность вычисления реактивной составляющей в области низких частот. Количество разбиений *p*, а, следовательно, и длина начального отрезка разбиения определяются из условия достаточно малой погрешности квадратурной формулы на начальном интервале. Обычно длина начального интервала выбирается равной по порядку величины $\sim c_2 |\overline{k}|$,

где \overline{k} — усреднённое значение волнового числа в области, содержащей источник и точку измерения. Эта априорная оценка длины начального интервала может быть уточнена методом Рунге [9]. В области высоких частот, когда оценка длины начального интервала превышает значение λ_0 , разбиение отрезка $[0, \lambda_0]$ не проводится.

Поскольку априорные оценки погрешностей описанных квадратурных процессов практически не достаточны, то конкретные значения таких параметров, как количество узлов квадратурных формул Гаусса и Лагерра, константы, определяющие разбиения и т. п. выбираются исходя из требуемой точности, экспериментально с учётом характерных особенностей решаемой задачи. При расчёте электромагнитного поля в горизонтальнослоистой среде, когда источник и точка измерения находятся в одном слое, описанный алгоритм применяется для расчёта аномального поля, так как первичное поле диполя в однородной среде выписывается в элементарных функциях.

3. Заключение

В настоящей работе предложены и обоснованы алгоритмы расчёта электромагнитного поля в вертикальнонеоднородных проводящих средах на основе деформации пути интегрирования в представлении Фурье-Бесселя. Эти алгоритмы были использованы при разработке программ расчёта электромагнитного поля для ряда моделей среды и источников поля. Выявленные характеристики — универсализм, сокращение времени счёта и др. указывают на существенные преимущества рассматриваемого метода по сравнению с обычно применяемыми методами интегрирования быстроосциллирующих функций.

Литература

- 1. Табаровский Л.А. Применение метода интегральных уравнений в задачах геоэлектрики. Новосибирск : Изд-во «Наука», Сибирское отделение, 1975.
- 2. Терентьев С.А., Гуц А.К. Теоретическое исследование полей локальных источников магнитотеллурического ноля. Отчёт / Омский гос.ун-т. Гр.79045782; Инв. № 818289. Омск, 1979. 58 с.
- 3. Терентьев С.А., Гуц А.К. Исследования особенностей спектральной плотности для электромагнитного поля в вертикально неоднородной проводящей среде // Математические структуры и моделирование. 2018. № 4(48). С. 61–77.
- 4. Терентьев С.А., Гуц А.К. Особенности спектральной плотности электромагнитного поля для электрического и магнитного диполей в вертикально неоднородной проводящей среде // Математические структуры и моделирование. 2019. № 2(50). С.66–78
- 5. Гуц А.К., Терентьев С.А. Исследования особенностей спектральной плотности для электромагнитного поля в вертикально неоднородной проводящей среде // Сб.: Автоматизация анализа и синтеза структур ЭВМ и вычислительных алгоритмов. Омск : ОмПИ, 1982. С. 78-80.

- 6. Терентьев С.А., Гуц А.К. Область аналитичности спектральной плотности электромагнитного поля в вертикально неоднородной проводящей среде // Математические структуры и моделирование. 2020. № 1(53). С.37–48.
- 7. Терентьев С.А., Бронников И.Н. Разработка алгоритмов расчёта на ЭВМ электромагнитных полей источников различной конфигурации в горизонтально-слоистой среде. // Депонированный отчёт по НИР. Инв. № 0285.0011141, № гос. рег. 0184.0015161. Омск : ОмГУ, 1984. 31 с.
- 8. Бердичевский М.Н., Жданов М.С. Интерпретация аномалий переменного электромагнитного полк Земли. М. : Недра, 1981. 327 с.
- 9. Бахвалов И.О. Численные методы. Т.1. М. : Наука, 1973. 631 с.
- Камаева Л.В., Терентьев С.А. Об одном классе аппроксимаций в теории тонкопроволочных антенн / В кн.: Автоматизация анализа и синтеза структур ЭВМ и вычислительных алгоритмов. Омск : Изд-во ОмПИ, 1981. С. 110–113.
- 11. Лаврентьев М.А., Шабат Б.Б. Методы теории функций комплексного переменного. М. : Наука, 1973. 736 с.
- 12. Самарский А.А., Николаев Е.С. Методы решения сеточных уравнений. М. : Наука, 1978. 502 с.
- 13. Терентьев С.А. Основные закономерности поведения поля полоской волны в слоистых средах с эллиптическим цилиндром. Дис....канд. физ.-мат. наук. Новосибирск, 1972. 158 с.
- 14. Варга Р. Функциональный анализ и теория аппроксимации в численном анализе. М. : Мир, 1974. 126 с.

ALGORITHM FOR CALCULATING THE ELECTROMAGNETIC FIELD IN THE MODEL OF A VERTICALLY INHOMOGENEOUS CONDUCTING MEDIUM

S.A. Terentyev

Ph.D. (Phys.-Math.), Associate Professor, e-mail: sa.terentyev@gmail.com A.K. Guts

Dr.Sc. (Phys.-Math.), Professor, e-mail: guts@omsu.ru

Dostoevsky Omsk State University, Omsk, Russia

Abstract. In this article we propose and substantiate algorithms for calculating the electromagnetic field in vertically inhomogeneous conductive media based on deformation integration paths into the complex plane in the Fourier-Bessel representation. These algorithms were used to develop programs for calculating the electromagnetic field for a number of environmental models and field sources.

Keywords: Electrical exploration, electromagnetic field of vertical electric or magnetic dipole, fast-oscillating integrals, deformation contour, complex plane, absence of singular points, deformation domain.

References

1. Tabarovskii L.A. Primenenie metoda integral'nykh uravnenii v zadachakh geoelektriki. Novosibirsk, Izd-vo ¡¡Nauka¿¿, Sibirskoe otdelenie, 1975. (in Russian)

- 2. Terent'ev S.A. and Guts A.K. Teoreticheskoe issledovanie polei lokal'nykh istochnikov magnitotelluricheskogo nolya. Otchet, Omskii gos.un-t, Gr.79045782; Inv. no. 818289, Omsk, 1979, 58 p. (in Russian)
- 3. Terent'ev S.A. and Guts A.K. Issledovaniya osobennostei spektral'noi plotnosti dlya elektromagnitnogo polya v vertikal'no neodnorodnoi provodyashchei srede. Matematich-eskie struktury i modelirovanie, 2018, no. 4(48), pp. 61–77. (in Russian)
- Terent'ev S.A. and Guts A.K. Osobennosti spektral'noi plotnosti elektromagnitnogo polya dlya elektricheskogo i magnitnogo dipolei v vertikal'no neodnorodnoi provodyashchei srede. Matematicheskie struktury i modelirovanie, 2019, no. 2(50), pp. 66–78 (in Russian)
- Guts A.K. and Terent'ev S.A. Issledovaniya osobennostei spektral'noi plotnosti dlya elektromagnitnogo polya v vertikal'no neodnorodnoi provodyashchei srede. Sb.: Avtomatizatsiya analiza i sinteza struktur EVM i vychislitel'nykh algoritmov, Omsk, OmPI Publ., 1982, pp. 78–80. (in Russian)
- 6. Terent'ev S.A. and Guts A.K. Oblast' analitichnosti spektral'noi plotnosti elektromagnitnogo polya v vertikal'no neodnorodnoi provodyashchei srede. Matematicheskie struktury i modelirovanie, 2020, no. 1(53), pp. 37–48. (in Russian)
- Terent'ev S.A. and Bronnikov I.N. Razrabotka algoritmov rascheta na EVM elektromagnitnykh polei istochnikov razlichnoi konfiguratsii v gorizontal'no-sloistoi srede. Deponirovannyi otchet po NIR, Inv. no. 0285.0011141, no. gos. reg. 0184.0015161, Omsk, OmGU, 1984, 31 p. (in Russian)
- 8. Berdichevskii M.N. and Zhdanov M.S. Interpretatsiya anomalii peremennogo elektromagnitnogo polk Zemli, Moscow, Nedra Publ., 1981, 327 p. (in Russian)
- 9. Bakhvalov I.O. Chislennye metody. Vol. 1, Moscow, Nauka Publ., 1973, 631 p. (in Russian)
- Kamaeva L.V. and Terent'ev S.A. Ob odnom klasse approksimatsii v teorii tonkoprovolochnykh antenn. V kn.: Avtomatizatsiya, Izd-vo OmPI, 1981, pp. 110–113. (in Russian)
- 11. Lavrent'ev M.A. and Shabat B.B. Metody teorii funktsii kompleksnogo peremennogo. Moscow, Nauka Publ, 1973, 736 p. (in Russian)
- 12. Samarskii A.A. and Nikolaev E.S. Metody resheniya setochnykh uravnenii. Moscow, Nauka, 1978, 502 p. (in Russian)
- Terent'ev S.A. Osnovnye zakonomernosti povedeniya polya poloskoi volny v sloistykh sredakh s ellipticheskim tsilindrom. Dis....kand. fiz.mat. nauk, Novosibirsk, 1972, 158 p. (in Russian)
- Varga R. Funktsional'nyi analiz i teoriya approksimatsii v chislennom analize. Moscow, Mir Publ., 1974, 126 p. (in Russian)

Дата поступления в редакцию: 25.01.2021