Antigravitation in higher dimensional General Relativity

Alexander K. Guts
Omsk State University, Omsk, Russia
E-mail: aguts@mail.ru
Let's consider 5-metrics

$$
\begin{gathered}
d S^{2}=\left[1+\frac{1}{6}\left(\varkappa c^{2} \rho_{2} a-2 \Lambda_{1}\right) a r^{2}\right] d x^{0^{2}}-\left[1-\frac{\left(\varkappa c^{2} \rho_{2} a+\Lambda_{1}\right)}{3} \cdot r^{2} a\right]^{-1} d r^{2}-r^{2} d \Omega^{2}-d a^{2}, \\
d \Omega^{2}=d \theta^{2}+\sin ^{2} \theta d \varphi^{2}
\end{gathered}
$$

where $\varkappa, \rho_{2}, \Lambda_{1}=$ const. Gravitational force, operating on a trial body, in 4-dimensional space-time $<M_{a}^{4}, d s^{2}>=<\left(x^{0}, r, \theta, \varphi\right),\left.d S^{2}\right|_{a=c o n s t}>$, is possible to calculate on a formula from [Landau L., Lifshits E. Theory of field. Moscow, 1973. P.327]:

$$
f_{\alpha}=\frac{m c^{2}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}\left\{-\frac{\partial}{\partial x^{\alpha}} \ln \sqrt{g_{00}}+\sqrt{g_{00}}\left[\frac{\partial}{\partial x^{\beta}}\left(\frac{g_{0 \alpha}}{g_{00}}\right)-\frac{\partial}{\partial x^{\alpha}}\left(\frac{g_{0 \beta}}{g_{00}}\right)\right] \frac{v^{\beta}}{c}\right\} .
$$

We have

$$
f_{r}=-\frac{m c^{2}}{6 \sqrt{1-v^{2} / c^{2}}} \frac{\left[\varkappa c^{2} \rho_{2} a-2 \Lambda_{1}\right] a r}{\left[1+\frac{1}{6}\left(\varkappa c^{2} \rho_{2} a-2 \Lambda_{1}\right) a r^{2}\right]}, f_{\varphi}=f_{\theta}=0 .
$$

In this case, it is obvious that it is possible to find the functions $\Lambda=\Lambda_{1} a, \rho=\rho_{2} a^{2}$ so that $\rho_{2}>0$, and f_{r} changes a sign in $a=0$ and $a=2 \Lambda_{1} /\left(\varkappa c^{2} \rho_{2}\right)$ in extensive spatial area with radius $r<c \sqrt{6 \varkappa \rho_{2}} /\left|\Lambda_{1}\right|$ (Inequality is received as a condition of positivity of a denominator in a formula for f_{r} for every a.), i.e. the attraction to the center of $r=0$ is replaced by the repulsion from center $r=0$.

Transition through $a=0$ changes a sign of "the cosmological constant" Λ, and observable change of gravitation on antigravitation can be regarded as manifestation of the cosmological repulsion. But upon transition through $a=2 \Lambda_{1} /\left(\varkappa c^{2} \rho_{2}\right)$ "the cosmological constant" keeps a sign, and it means that we have other type of antigravitation.

If $r>c \sqrt{6 \varkappa \rho_{2}} /\left|\Lambda_{1}\right|$, then denominator of f_{r} is remained positive under
$a>a_{+}(r)=\frac{1}{\varkappa c^{2} \rho_{2}}\left[\Lambda_{1}+\sqrt{\Lambda_{1}^{2}-\left(6 \varkappa c^{2} \rho_{2} / r^{2}\right)}\right]$ or $a<a_{-}(r)=\frac{1}{\varkappa c^{2} \rho_{2}}\left[\Lambda_{1}-\sqrt{\Lambda_{1}^{2}-\left(6 \varkappa c^{2} \rho_{2} / r^{2}\right)}\right]$.
If $\Lambda_{1}>0$, then we have $a_{+}(r)<2 \Lambda_{1} /\left(\varkappa c^{2} \rho_{2}\right)$. Hence, for every $r>c \sqrt{6 \varkappa \rho_{2}} / \Lambda_{1}$ when the parameter a is changed in some small interval $\left(2 \Lambda_{1} /\left(\varkappa c^{2} \rho_{2}\right)-\varepsilon(r), 2 \Lambda_{1} /\left(\varkappa c^{2} \rho_{2}\right)+\varepsilon(r)\right)$, the function f_{r} changes a sign, i.e. the attraction is replaced by the repulsion. Under $\Lambda_{1}<0$ we have $2 \Lambda_{1} /\left(\varkappa c^{2} \rho_{2}\right)<a_{-}(r)$. Hence, for every $r>c \sqrt{6 \varkappa \rho_{2}} / \Lambda_{1}$ gravitatiomal force f_{r} changes sign, when the parameter a is changed in the same interval.

Thus, when we are moving in 5 -dimensional bulk, i.e. when a is changed, the geometry of 4 -brane M_{a}^{4} is changed so that gravitation (attraction) is replaced with antigravitation (repulsion).

