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In recent years the theory of semigroups of Lie groups has been intensively studied. The problem of 
calculating the automorphisms of connected subsemigroups generates particular interest. For Abelian 
Lie groups this problem has been completely solved by A.D. Aleksandrov [1]. However, for noncom- 
mutative Lie groups, no notable results have been obtained yet (the basic affine Lie group [2, 3] and 
3-dimensional Lie groups [4] being exceptions). 

In this article we find the automorphisms of connected subsemigroups with quasicontingency of 
the form L x K (see Definition 1 below) for the case of the basic a n n e  Lie group. This completely 
solves the problem of computing the automorphisms of subsemigroups of the basic affine Lie group. 

The basic a n n e  Lie group is a connected simply connected real Lie group whose Lie algebra is 
given, in a suitable basis X 1 , . . . ,  Xn, by nontrivial commutation relations 

[ x , , x d  = x i  (i  = 1 , . . .  - 1). 

Semigroups of the basic a.ffine Lie group and their automorphisms were first analyzed in [2] and, 
in detail, in [3-6]. Geometrical language was used; and, instead of semigroups, the partial orders 
generated by them were studied. We should note the article [7], which exerts a great influence on 
explaining the rote of the basic aNne Lie group in the theory of Lie semigroups. It was shown that 
this group occupies a specific position among the ordered Lie groups; later, this was confirmed in [8, 
9]. 

It is important  to note that the basic affine Lie group of dimension 4 is the transitive isometry 
group of the de Sitter stationary universe that was considered by Hoyle and Narlicar as an alternative 
to the Big Bang theory in cosmology. 

Let G be a connected Lie group, and let P C G be a semigroup which contains the unity e. Put  
P~ - x - P,  by definition. A bijection f : G --+ G is said to be a P-automorphism if f (e)  = e and 
f(P~) = PI(~) for each element x �9 G. Denote the group of all P-automorphisms by Aut(P). 

If N is a one-parameter subgroup, then, given any element x, the set N~ _-- x- N is called the line 
passing through the point x. A ray issuing from the point x is a set of the form Lz = x . L, L being 
a one-parameter semigroup containing the unity. 

A quasiaffine transformation is defined to be a homeomorphism f : G --* G which maps every line 
onto a line. 

A set of the form Ex - x .  E, where E is a k-dimensional subgroup, is called a k-dimensional 
plane. 

A cone Kx with vertex x is the union of rays issuing from the point x. 
For a set A C G, the closure, the interior, a n d  the boundary of A are denoted by A, int A, and 

OA, respectively. 

D e f i n i t i o n  1. The quasicontingeney or q-contingency of a set A C G at a point a is defined to 
be the cone formed by all limits of rays issuing from a and passing through x �9 A, where x r a and 
x -+ a. If a is not a limit point of A, then { a } is called the quasicontingency of A at a. We denote 
the quasicontingency by qc(A, a). 

It is easy to verify that the q-contingency is a closed cone and qc(A, a) = qc(A, a). 
From now on we will denote the basic affine Lie group of dimension n by H n. 
Let L be a ray with origin e, and let K be a cone with vertex e such that L and K do not lie in 
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a common hyperplane and L 0 K = { e }. We set 

L x K = U L(e ,x) ,  
xEA 

where A = UxeKLz,  and L(e, x) is the ray issuing from e and passing through x, x ~r e. The set 
L x K is a cone with vertex e; also, if K is a semigroup, then L x K is also a semigroup. 

Let P C H '~ be a semigroup containing the unity. For qc(P, e) # L x K,  the group Aut (P)  has 
been described [3, Theorem 7]. In the present article we shall give a description of Au t (P )  for the 
case in which qc(P, e) = L x K. 

Let M C H a be a subset containing the unity; then, by definition, we set M~ _= x �9 M, where 
x E H a. We obtain the family of subsets, .Ad = { Mx : x E H n }. We say that  the family  3,1 is 
preserved by a mapping f : H a ~ H a if, for each point x E H a, f ( M z )  = My(x). 

Let E be a k-dimensional subgroup, 1 < k < n - 1 contained in an Abelian subgroup of H a. A 
k-dimensional horosphere is defined to be a set Ex -- x .  E,  where x E H a. A horosphere of dimension 
1 is called a horocycle. 

Let L be a ray with origin s. Let E be a hyperplane containing the unity e, and let L N E = { e }. 
Assume that  either the line N which contains L is a horocycle, or E is a hyperhorosphere. Denote by 
A a subset of L which is homeomorphic to the interval [0, 1] so that 0 corresponds to the unity e. Put  
A~ _= x �9 A, where x E Ha; the set Ax is called an interval. 

D e f i n i t i o n  2. A displacement dEA is defined to be a homeomorphism of H n, n > 2, onto itself 
such that:  

1) dEA(e) = e; 
2) for every x E H a we have dE~(Az) = Ads~(z ), dE~(Ex) = Eds~(z); 
3) dE~IE = idE (i.e., the restriction of dE~ to E is the identity mapping). 
Let 0)~ = { e, a }. A set of the form x.  (~ \ { e, a }) is called an open interval with endpoints x and 

x . a .  

D e f i n i t i o n  3. A quasicylinder Q(E,  ),) is a subset M C H ~ meeting the following conditions: 
1) M can be represented in the form 

M = U(Mn U (M F1En)), (1) 
n 

where En = a n �9 E,  n is an integer, and Mn is the union of open intervals with endpoints lying on the 
planes En and Ea+l  (a priori, some Mn's can be empty); 

2) M does not admit  a representation (1) with the same E and with an interval ,V C L such that 
A I # A and A C A r. 

For A -- L, the displacement dEL and the quasicylinder Q(E,  L) are well-defined and exist. If 
A :~ L, then there exist E and A such that  dEA and Q(E,  A) are not defined (for example, they do not 
exist if N is a horocycle; see the proof of Theorem 1). 

Let P be a semigroup which contains the unity. We accept the following local Einstein axiom: 

(AE) There is a neighborhood of e whose intersection with P N P contains only one element, e. 

T h e o r e m  1. Let P be a semigroup, in H a, containing the unity and satisfying the axiom (AE). 
Assume that qc(P, = L • K ,  L C N (N  being a horocycle), g # L1 • 1<1, and int qc(P, e) # Z. 
Then either each continuous P-autornorphism is quasia~ne, or P = Q(E,  L); i.e., 

(2) 

where E is the hyperplane spanned by K ;  in this case, every continuous P-automorphism can be 
written in the form fo o dEL, where fo is a quasiaffine transformation, fo (E)  = E ,  and U is some set. 
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Proof .  (A) Let f : H" --* H n be a continuous P-automorphism. It tbllows from [3, Theorem 51 
that C, C = qc(P, e), is a conic semigroup and f is a C-automorphism. Hence, it easily follows that 

f ( E x ) = E I ( ~ )  , f(N~) = Nf(~). (3) 

Then f i e  : E --* E preserves the family {I ( ,  : x E H n }. 
quasiaffine. By [3, Theorem 4], we have 

According to [3, Theorem lJ, f i e  is 

f = g o d E L  , (4) 

where g is a quasiaffine transformation, glE = f iE ,  gIN = idN, and dEL is a displacement. Now we 
clarify how arbitrary the form of this displacement may be. To this end, we should take into account 
the fact that f is a P-automorphism. 

(B) Let us introduce, in H n, coordinates X l , . . . , x ~ ,  xl > - 1 / s i n 0 ,  0 < 0 < ~r, in which the 
group operation x �9 y is given by the rules 

(x.  Y)I = [(xl sin0 + 1)(ya sin0 + 1 ) -  1J. (sin0) -1, 

(x. Y)2 = (xl sin 0 + 1)(yl cos 0 + Y2) + Xl COS 0 + X 2 -- (X- Y)I"  COS 0, 

(x- Y)a = (Xl sin0 + 1). Y3 + x3, 

y) .  = (Zl sinO + 1 ) . u .  + x . ;  

the coordinates Xl, x3 , . . . ,  Xn vary along lines passing through e and lying in E; x2 varies along N. 
Also, x2 > 0 on L, and e = (0 , . . . ,0 ) .  

The coordinate system constructed may be called all]he, since in this system any line is given by 
equations xi = ai .  t + bi (i = 1 , . . . ,  n), where t E (6, +oc), and 6 is either a real number or - co .  

As follows from equalities (3), in these coordinates the P-automorphism f takes the form 

f ( x )  = ( ~ l ( X l ,  x 3 , . . .  ,Xn) , ~(x2)  , ~2(Xl ,  x3 , .  �9 �9 ,Xn) , . . . ,  ~ n - l ( X l ,  x 3 , . . .  ,Xn)). 

To determine the form of c2(x2), we apply Aleksandrov's method [1; 6.3-6.6] (note that in this article 
z2 is denoted by ~). 

As a result, we obtain 
= x2 +  (x2) 

(up to a quasiaffine transformation in N of the form x2 --* k - ix2 ,  with 0 being a periodic function 
with periods a's, a r 0, such that 0(a) = 0, and a E O(Pa N N),  a E E. Thus, we have the following 
three possibilities: 

1. The periods a 7~ 0 of 0 are not divisible by any a0. In this case v ~ is constant; moreover, 0 = 0, 
since O(a) = 0. Consequently, f is quasiaffine along N, since r - x2. 

2. All a =/! 0 are multiples of some a0, where a0 is the minimal value with this property. Then a0 
is a period of 0, with 0 completely arbitrary in all the other respects. 

3. The only admissible value of a is zero. Then ~ is any homeomorphism. 
In case 1, the displacement dEL is a quasiaffine transformation along N; i.e., f is quasiatfine. Also, 

P cannot be presented in the form (2), for the semigroup (2) admits a nontrivial displacement dEL. 
In case 3, f is an arbitrary homeomorphism along N. This means that P has the form (2). Indeed, 

the boundary, OM, of M = Pafl  N consists of the single point a = 0. Hence, for each point a E E, 
either Pa contains the whole ray L (or L \ { e }) lying on N, or Pa N N = O. Therefore, the set P 
intersects every line Nb, b E E,  in the ray Lb (or Lb \ { b }) if P~ fl Nb 7 ~ 0 .  In this case, P is clearly 
of the form (2). 

Now we show that case 2 cannot occur�9 Suppose that it does. Then, for each a E E, P~ intersects 
N in intervals which have lengths divisible by a0 (with respect to the Euclidean metric that can be 
defined on N). Let En = a n ' E ,  where E0 = E, an E N, n is an integer, and the point a~+1 is 
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located on N at a distance c~0 from the point an. Then f keeps each En invariant, for O(n �9 s0) = 0. 
Since 0 can arbitrarily vary on intervals (n "s0, (n + 1) �9 c~0), it follows that each line Nb, b E E, 
intersects P in intervals with endpoints lying on the planes E,~. In the same way, (H ~ \ P)  M Nb are 
intervals with endpoints lying on E, .  However, an analogous statement holds for sets Pa N N and 
(H n \ Pa) M N,  where a E E is an arbitrary point. Since E is not a horosphere; by moving a into e 
via a left translation, we find that the sets 

a- l  . (pa VI N)  -- p f') (a - l  . N)  

and 
a -1 .  [(H" \ Pa) NN] = (H" \ P) M (a -1 .  N) 

are intervals with endpoints which do not necessarily belong to En. Contradiction. 
Thus, either f is quasiaffine, and P is not of the form (2), or P is of the form (2), and f = fo OdEL. 
The proof is complete. 

T h e o r e m  2. Let P be a semigroup, in H a, which contains the unity and satisfies the axiom (AE). 
Suppose that qc(P, e) = L x K ,  K C E (E being a hyperhorosphere), K 7 ~ La x K1, and int qc(P, e) 5r 
0.  Then either every continuous P-automorphism is quasiaJfine; or P is a quasicylinder, Q ( E , I )  
(the case )~ = L is not excepted), and f = fo o dE, fo being a quasiaffine transformation. 

Proof .  We repeat section (A) of the proof of Theorem 1 to establish that f is of the form (4) and 
equalities (3) hold. 

Let h = g-1 o f ,  i.e., h = dEL. To clarify the form of bin , we take into account the fact that f 
is a P-automorphism. Let us introduce, in H n, coordinates u l , . . . ,  u,~, Ul > 0, in which the group 
operation looks like 

a . b =  (al . b l , a l b z + a 2 , . . . , a l b n + a ~ ) ,  e =  (1 ,0 , . . . , 0 )  

[2]; each quasiaffine transformation may be represented by linear expressions; and, moreover, every 
line is defined by relations of the form k i t+#i  (i = 1 , . . . ,  n), where t is a parameter. Now, it is easy to 
verify that h maps P onto the semigroup h(P),  i.e., h maps the left-invariant family { P,  : x E H n } 
onto the left-invariant family { h( Px) : x E H n }. 

It is evident that h(N, )  = Nh(x) , h (E , )  = Eh(x), hiE = idE, h(e) = e. 
Let Ma = Na N P,  Mid = Na 71 h(P),  where a E E. Since h is a homeomorphism, the sets Ma and 

M~a = h( Ma ) are topologically equivalent. 
Introduce, on N~, a left-invariant metric p induced by the Lobachevsky metric [2, 3]: 

n 

= 

i=1 

Note that h maps the point of OMa nearest to E (with respect to p) into the point of OM~a 
nearest to E; and, in general, the inequality p(bl, E) < p(b2, E) with bi E OMa (i = 1, 2) implies the 
inequality p(h(bl ) ,E)  < p(h(b2),E). Let a(b~) = Eb~ M N  with ba E OM~. Then h(c~(ba)) = a(h(ba)). 
Put A =  { c~(b~) : a E E }, A' = { h(a(ba)) : a E E } , a n d d e n o t e t h e e l e m e n t s o f A a n d  A'byc~,  
/3,... and (~', /3 ' , . . . ,  respectively, in such a way that c~' = h(c~), /3' = h(/3), etc. By the above, the 
inequality p(c~, E) < p(/3, E) results in p(c~', E) < p(/3', E). 

If A contains only one element, c~ = e, then, obviously, P = Q(E,  L), and h is a displacement, dE;. 
We can show this by analogy to case 3 in section (B) of the proof of Theorem 1. Thus, f = fo o dEL. 
Let A contain at least two elements. Choose c~ such that a ~ e, a E E,  ~ = Eb N N,  b E OMa, and 
suppose that b is the point of OMa nearest to E. Then b 2 E b. OMa = b. O(Na M P) = O(Nba M Pb), 
and b 2 is the point of O(Nba M Pb) nearest to E. In general, the point b 2 plays the same role with 
respect to Eb as that of b with respect to E. Let/3 = Eb2 M N. Since each left translation transforming 
b into c~ keeps each horosphere Ex invariant and preserves the family { N~ : x E H n }, we have 
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p(e,/3) = 2p(e ,a) .  The map h preserves this construction, and, if a '  = h(a) ,  /3' = h(/3), then, as 
above, p(e, fl') = 2p(e,a ' ) ,  by the left-invariance of the family { h(P~) : x C H n }. Repeating the 
procedure, consider the point b 3 E O(Nb2a Cl Pb~) and find a point 3' E N such that  p(e,7)  = 3p(e, a) 
and h(7 ) = 7' E N with p(e,7') = 3p(e,a ' ) .  Continuing in this manner,  we generate a sequence of 
points { an } C N such that oq = a,  a2 =/3,  a3 = 7 , . - . ,  p(e,c~n) = np(e,a), p(c~,~,an+j) = p(e,a), 

I and, moreover, if a ,  = h(an),  then p(e, cr,) = np(e,a') and p (or,, an+j)  = p(e,a'). If such a sequence 
can be constructed for any point a,  a E A, c~ r e, then we say that h : N --* N has a-periodicity. 

The following two cases arise: first, among the points of A there exists a point o~0, a'0 r e, such 
that each p(e, c~), a C A, is divisible by p(e, a0); second, there is no such a point. 

In the first case, there exist a sequence { (a0)n } C N and a quasiaffine transformation F : H --* H 
such that  FIE = idE, and Fllv is a dilatation. Moreover, (F  -1 o h)(a0)n = (a0)~ (for n = 1, 2 , . . .  ) 
and, on each interval ((a0)n, (a0),~+l) C N, F -1 o h is an arbitrary homeomorphism. In other words, 
f = f0 o dE and P = Q(E,A). 

In the second case, we can assert that hlN is quasiaffine, and so f iN is quasiaffine. Since, in 
addition, f iE is quasiaffine, f is quasiaffine in H n. Indeed, in this case, there are sequences { c~n }, 
{/3n } C N (a l ,  /31 # e) such that  p(e, a l )  is not a multiple of p(e,/31). Without  loss of generality, 
we can suppose that  a n' = h(an) = an (if not, we apply a dilatation along N). Let /3" = h(/3=), 
3~ #/3n and, for definiteness, assume p(e,/31) < p (e,/3~) (if not, substitute h -1 for h). Suppose that 
p(/31,/3~) = r > 0. Since p(e, al) is not a multiple of p(e,~l), there are suitable numbers k and m 
satisfying the inequalities 

o < p (e ,  - p ( e , / 3k )  < 

(e /3' By a- and /3-periodicity of h, we have Pk , kJ = p(e,/3k) + k . e ,  p(e, am) = p(e ,a~) .  Hence 
e t P(, /3k)  > p(e,C~m), contrary to the inequality p(e, arn) > p (e,/3;), which follows from (5), since h 

is a homeomorphism. Thus, /3~ = fin. Since p(e, a l )  and p(e,/31) are relatively prime, and h agrees 
with the identity on { a ,  } and {/3,~ }, it follows that h is the identity on N; i.e., f is quasiaffine. The 
proof is complete. 

T h e o r e m  3. Let P be a semigroup, in H n, containing the unity and satisfying the axiom (AE). 
Assume that qc(P, e) = L x K, K 7 ~ L1 x K1, K C E, the hyperplane E is not a horosphere, and L 
does not lie on a horocycle. Then every continuous P-automorphism is quasiaffine. 

P r o o f .  The claim follows from [3, Theorem 4(7)]. 

R e m a r k .  Without  the requirement K ~ L1 x K1, P may be a quasicylinder along several direc- 
tions. For example, if P = L x L1 x K1, then it is possible that P = Q(E, L) and P = Q(E1, L1), 
where E1 is the span of L and K1, and f = fo OdEL odE1L1. This can be proved by using the methods 
introduced in the proofs of Theorems 1 and 2. 
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