
of (pairwise nonisomorphic) finitely generated indecomposable right R-modules. An arbi- 
trary right R-module over such a ring is a direct sum of finitely generated modules [ii]. 

COROLLARY 5. Let R be a ring of finite representation type and Jf = Mod-R be the 
category of right R-modules. Then Eq. (i) is valid for each inductively closed proper 
class ~ in~ZK. 
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DENSE ORDER IN LOBACHEVSKII SPACE 

A. K. Guts UDC 513.812 

Let H n be an n-dimensional hyperbolic space, let T be a simply transitive subgroup of 
the group of motions, whose Lie algebra is isomorphic to the Lie algebra of the group of 
affine transformations of the arithmetic space R n-1 generated by translations and homo- 
theties, and let ~ = {Px: x ~ H n} be a preorder in H n, that is, a family of subsets of 
H n that satisfies the conditions: i) x ~ Px, 2) if y ~ Px, then Py c Px, 3) for any x~ 
PI n and t ~ T we have t(Px) = Pt(x)" 

We put Px- = {Y ~ Hn: x E py}. 

Definition. A preorder ~ is said to be dense if for any x, y such that y ~P~\{x}, 
we have Px N Py- # {x, y}. 

If the relation y E Px is written as x ~ y, that is, we use the traditional notation 
for the preorder, then density of the preorder means that x ~ y implies the existence of 
z # x, y such that x ~ z and z ~ y, where it is assumed that x # y. 

A preorder ~ is closed if every set Px is closed. 

The aim of this note is to describe closed dense preorders in H n, n e 2. For affine 
space A n , n e 2, this problem was posed by A. D. Aleksandrov and solved by A. V. Levichev 
[1]. 

i. A quasiline (quasiray with origin x) passing through a point x is the orbit of x 
under a one-parameter subgroup (semigroup) of the group T. Correspondingly an m-dimensional 
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quasiplane passing through x is the orbit of x under an m-dimensional subgroup of T. Quasi- 
lines (q-lines) and also quasiplanes (q-planes) have many of the properties of lines and 
planes respectively in affine space (for the details see [2]). 

A quasiray (q-ray) with origin x passing through y, y ~ x, is denoted below by L(x, y). 
Also, as a rule, instead of the word "quasihyperplane" we write "quasiplane." 

A quasicone (q-cone) C x with vertex x is a union of q-rays with origin at x. 

Let ~ be a preorder in H n and e a fixed point in H n. We put P ~ Pc" We denote by 
the closure of a set A, and by A x the image of A under the action of a motion t ~ T such 
that t(e) = x, that is, A x = t(A). 

The quasicontingency (q-contingency) of a set P at the point e is the q-cone formed by 
all possible limits of q-rays emanating from e and passing through x ~ P, x ~ e, as x tends 
to e. If e ~ P\{e}, we assume that the q-contingency of P at e is the point {e}. We de- 
note the quasicontingency of P at e by qc(P, e). 

Proposition i. qc(P, e) c ~. 

For the proof see [2]. 

Proposition 2. Let ~ be a dense preorder in H n such that P # {e} and for any x ~ P 

the set 'P N P~ is compact. Then e ~ P\{e}, and so qc(P, e) # {e}. 

Proof. Suppose that x ~ P, that is, e ~ x. Then there is an x i such that e ~ x i ~ x, 
and so on. As a result we construct a sequence {Xn} c p n Px- for which e ~ Xn+ i ~ x n for 

every n. Since P n Px- is compact, without loss of generality we may assume that {Xn} con- 
verges to a point a. Let U be a neighborhood of a. Starting from some number, all x n 
U. We take two points Xn, x m ~ U, where x n ~ x m. Let t ~ T be a motion such that t(x n) = 
e. Then t(x m) ~ t(U) and e ~ t(Xm). Because the neighborhood U is arbitrary, this implies 

that e ~ P\{e}. This proves Proposition 2. 

2. The exterior q-cone is the set exp P = U L(e,x). 
~ E  P , x ~ e  

THEOREM. Let ~ be a dense closed preorder in H n, n >_ 2, such that the exterior q-cone 
ext P does not contain a q-line. Then P is a q-cone, more precisely, P = qc(P, e). 

Proof. Since ext P does not contain a q-line, there is a strictly supporting quasi- 
plane E to ext P at e, that is, ext P N E = {e}, and therefore P N E = {e}. The quasiplane 
E splits H n into two connected components. Let E + be the open connected component contain- 

ing P\{e}, and E- = Hn\E +'. Suppose the contrary, that is, P is not a quasicone. Then 
there is a point x i E E + n (P\C), where C = qe(P, e). Let Qi be the strictly supporting 
quasiplane to C at e that passes through xi, and let Qi + be the open connected component 

of the set Hn\Qi that contains C, Qi- = Hn/Qi +- 

By hypothesis P n Pxl # {e, xi}, so there is a point a~P A P~I such that a # e, x i. 

Three cases are possible: 

~) a ~ q 7  n E + n E~, 

2) a ~ Q i  n E + ~ E~, 

3) a ~ q ~  n E + n E~. 

In Case i we take x 2 = a and for x~ we repeat the arguments for xl, that is, we take 
the strictly supporting q-plane Q2 to C that passes through e and x2, and then choose a 
point of P n Px2-/(E U Ex2) , for which it is again necessary to analyze the three cases 

mentioned above (we note that to complete the following inductive step there is no need to 
require that the condition Xn+ i ~ P n Pxn- is satisfied - see the analysis of Case 3 be- 

low: every subsequent step is possible if at least one of the conditions of the form 1-3 
is satisfied). 

In case 3 let t ~ T be a motion that takes a to x i. Then t(x i) ~ Pxi and t(x i) 

Qi-" If we take �9 ~ T so that ~(x i) = e, then Tt(xi) ~ P N Qi-, since ~(Qi) = Qi. More- 
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+ N Et(xl)-, and so ~t(x I) ~ E + N - over, since aGE+ n ET, we have t(x z) ~ Exl Exl 

Thus, Tt(x l) ~ P N QI- N E + N Exi Thus from Case 3 we have arrived at Case 1 

In Case 2 we can repeat the arguments carried out for the point x I. Again we arrive 
at Cases i-3. If each time we just repeat Case 2, then we obtain the sequence {Xn} c QI n 
E + N Exi-, where x n e P N Qz N E + N Exn_l-. Since the set P fl E + N Exl- is compact, with- 

out loss of generality we may assume that {Xn} converges to a point b ~ P N QI N E + fl Eb-. 

Since E b c Exl , we have succeeded in going from x I to a point b "closer" to e than xl, in 

the sense that E b lies between E and Exl. Now, redenoting b by x l, we repeat all the argu- 

ments afresh. If we again have only Case 2, then we obtain a point b' still "closer" to 
e than b was before, that is, Ebi lies between E and E b. In transfinitely many steps we ar- 

rive at the point e, that is, we distinguish a sequence of points {bn} c p N QI 0 E + N Exl- 

that converges to e. Then the q-rays {L(e, bn) } will have as limit a q-ray L lying in Qz- 
But by definition L c C, and by construction L N qc(P, e) = {e}. This is a contradiction. 

However, we now turn to Case 1 and Case 3 which reduces to it. 

In Case i, repeating our arguments time after time, we arrive at a sequence of points 
x n e p N Qn-1- N E + N Exn_1 , where Qn is the strictly supporting quasiplane to C passing 

through e and Xn, and all the Qn intersect in one (n - 2)-dimensional q-plane. Since P N 

E + N Exl is compact, without loss of generality we may assume that {Xn} converges, more- 

over to the point e (the last part is obtained just as in the analysis of Case 2). But 
then the q-rays {L(e, Xn) } have as limiting q-ray L c Qz-. By the definition of the quasi- 
contingency L c qc(P, e) ~ C, and by construction L N C = {e}. This is a contradiction. 

Thus the assumption that P\C ~ ~ leads to a contradiction. Therefore F = C. This 
proves the theorem. 

3. A semigroup P of a Lie group is said to be Lie if it is the closure of the subsemi- 
group S generated by the union of all one-parameter semigroups that are contained in S (see 
[3]). Obviously an arbitrary closed subsemigroup need not be Lie. However, taking into 
account the importance [3] of the concept of a Lie subsemigroup, it is useful to be able 
to establish that subsemigroups of a Lie group are Lie. 

We say that a subsemigroup P containing the identity is dense if for each x E P there 
is an a~P such that a-lz EP. Since a subsemigroup P containing the identity generates a 
left-invariant preorder ~ = {Px: Px = x'P, x ~ G} on the Lie group G, the given defini- 
tion of a dense subsemigroup implies that the preorder ~ is dense. 

The theorem proved in this note, together with a theorem of A. V. Levichev [i], 
gives sufficient conditions for a closed dense subsemigroup to be Lie in the case when the 
Lie group G is isomorphic either to the group of parallel displacements of Euclidean space 
E n, n e 2, or to the simply transitive group of motions of Lobaehevskii space H n, n e 2 
(the basic affine Lie group in the terminology of [4]). Both these groups are exceptional 
among ordered Lie groups [4]. Consequently, the question of whether closed dense subsemi- 
groups of Lie groups are Lie has been solved for two exceptional groups and remains open 
for all the others. 

. 

2. 

3. 

4. 
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