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It is shown that a strong gravitational wave can reflect a flow of scalar particles 
moving toward it. The particles initially penetrate the forward wave propagation 
front and only then are reflected. 

We shall consider the fate of a scalar field which propagates toward a planar gravita- 
tional wave. In [i] it was shown that a planar electromagnetic wave colliding with a grav- 
itational wave packet first penetrates beyond the forward fron of packet propagation, and 
then reverses its propagation direction, i.e., is reflected. Below we will demonstrate that 
a similar phenomenon occurs upon collision of a Peres gravitational wave with a propagating 
scalar field. The Peres metric satisfied the various criteria of gravitational radiation [2]. 
Therefore, the result obtained is valid no matter of the view taken as to the nature of grav- 
itational waves. The Peres metric is of further interest because in a number of cases it may 
prove to be a source generating such waves [3]. 

We will assume that a planar gravitational wave propagates in the positive x-direction, 
while the scalar field moves in the opposite direction. The gravitational wave propagation 
front is specified by the expression x ~ = ct -- x = const, while that of the scalar wave-particle 

is given by x I = i/~[ct + (~-- l)x] = const. Here ~2 is a constant related to the particle 
speed v as follows: v = c/(~-- i). The Minkowsku metric ds 2 = cadt 2- dx 2- dz 2- dz 2 in co- 
ordinates x ~ = ct -- x, x I = i/~[ct + (~ -- l)i],X 2 = y, x 3 = z has the form: 

ds  2 -  (l + 2~) d x  ~ + 2 d x ~  ~ - -  d x  ''2 - -  d x  a~ ~ = - -  1/~. (i) 

We will assume that the portion of space-time which corresponds to particle motion up to 
the moment of collision is specified by the inequalities x~ xl~0 , while the portion of 

space--time corresponding to wave propagation until the collision moment is given by x~ 
x1~ 0. The collision occurs at the moment x ~ = 0 at x I = 0. The forward propagation front 

of the Peres wave is described by the equation x ~ = 0. The flow of time from past to future 
corresponds to increase in the coordinate x ~ 

We will neglect the contribution of the scalar field to space--time curvature and at 
x ~ < 0 we will take the metric in the form of Eq. (i), while for x~ ~0 we use the Peres met- 

ric: 

ds" = (1 q- 2~ + f ( x  ~ x ~-, x'~)) d x  ~ -I- 2 d x ~  - -  d x ' 2  - -  dx:'~, (2) 

where 

a~f a'f (3) 
Ox,,~ q- -- 0 Ox3 2 

(see [2, p. 113]). Satisfaction of Eq. (3) is equivalent to the assumption that metric (2) 
satisfied the Einstein equations for a vacuum, Rik = O. The function f must not only satisfy 
Eq. (3), but must also be chosen so that the curvature of space-time is nonzero. For this 
purpose, it is useful to consider that 
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R._,o~o _ 1 02 f R'eO>;o = t?.,o.,~ - 1 O~-f R.~o.~o = - -  1 c?~ f 
2 0 x " -  ' 2 c?x~Ox :~ ' ' '2 OX ~'~ 

where Riklm are the components of the Riemann--Kristoffel tensor. We assume that 

f(o,  x -~, x',) = o. (3') 

This condition assures a continuous maerger of the metrics of Eqs. (i) and (2). 

In a pseudo-Riemannian manifold the equation of the scalar field has the following form: 

o r  

-- g:~- ~ + Ox,-- 7 
' ~-- & F ] = o  (4) 
F - gg;~ox ~ / 

cg~F - O, 
, ,2ate + 20x,,Ox t (1 + ~  ,~ 

O'_,~F OnF c? -~ (4 ' ) 

where D = mc/~ [4, p. 127]. We will calculate the density of the particle three-momentum 
P(~) (polarized energy flow through a unit area per unit time) [5, p. 146] with respect to 
the following orthoreference: 

klo)~ (I, --1(f-f-2~3),  O, 0 ) ;  

; ( 1 + o ! ,  ) ' ,o= - - I ,  ~ - ( f  2-62~), O, 

- i  
;,(2) = (0, O, 1, 0); 
>%~ = (o, o, o, 1); 

(5) 

i = diag{l, -i, -I, -i} is the Minkowsky tensor. where gik%(m)%k(n) = ~mn and ~mn 
i K- 

--T;~X(0)k(=), (= _-- I, 2, 3) , where 

'Tm O~F OW I ( ) 
- Ox t Ox ~ + _~g;~ ~ 2  _ g , ~  O ~  O'F 

ON m OX n 

Then P (~) = 

is the scalar field energy-momentum tensor. 

Performing the calculations we obtain: 

2 1 ~F~ = - -  W o - - ~ - ( f + 2 ~ ) . ~  (2+2~+/)~P~--~Fo . P ~ =  ~ . ( l + 2 ~ + f ) - g o  - T  ' ' 

P(a)= --[~F0--2J-(/q-2~).~4j-W~, 

where Yi ~ 3Y/3x i. 

We assume that all functions Yi are finite in the variable x~ ~2, Ys maintain their sign 
for any x ~ and finally, TI # 0 (~i # 0, since we are considering a particle moving toward 
the gravitational wave). These limitations are not burdensome, and in general correspond to 
the real physical problem (see example below). Before the collision ~ = T(x I, x 2, xS), i.e., 
is independent of x ~ f~0, therefore P(1) = 8(i + 8)~ < 0. If we now consider P(~) (~ = i, 
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2, 3) as functions of the variable f, it can easily be seen that they all change sign 
simultaneously at one and the same value of f = fo as IfJ changes from zero to infinity. But 
f = f(x ~ x a, x~). Therefore, we may assume that the change in f occurs upon increase of the 

o variable x ~ from zero to infinity. Let fo = f(x~, x 2, xa), where xo > 0. Thus, the scalar 
particles which have traversed the forward propagation front of the gravitational wave cannot 
penetrate beyond the front x ~ = x~, at which a radical change occurs in the direction of par, 
ticle flux propagation. In essence reflection of the particle flux by the strong gravita- 
tional wave occurs. We note that our conclusions are identically valid for head-on or oblique 
"collision" of the fields. 

Examples. i. We will consider a massless particle with ~ ~ x ~, satisfying the condi- 
tions enumerated above. In this case (~ = 0, ~ = -~/2) 

and reflection occurs when there is a x~ > 0 such that If(x~, x 2, x3)I> 1. 

The question then arises of whether such a function f exists~ Indeed that function must 
satisfy Eqs. (3), (3') and depend significantly on x 2, x 3, since the latter ensure curvature 
of space--time. It can easily be seen that the desired function can have the form 

f (  x~ x2, x3) = x~ q- | / - x  ~ -t- ]/ x~f q - xaX], xg = 2. 

On the other hand, if we take 

x 3 
f ( x  ~ x ' ,  x ~) =l ( s i n=  x~ TO [f(x ~ x ~, x ~ ) [ < l  (6) 

reflection does not take place. This result is valid, because inequality (6) indicates the 
relative weakness of the gravitational wave. If we take the following functions: f = x~ 3 
or f = x~ 2 + x3), then in the plane xix 3 orthogonal to the direction of particle flux mo- 
tion ~'gaps" appear, through which the particles pass through the gravitational wave packet. 
In the first case the "gap" is described by the equation xix a = 0, and in the second, by x 2 + 
xa = 1. 

2. We will consider massive particle. The solution of Eq. (4') will be a function ~(x ~, 
x 2, x a) = x1~(x 2, x3), where~ (x a, x a) # 0 satisfies the equation A~= 2~. We see that ~i 
is finite in x ~ ~i = �9 # 0. Consequently, for the solution considered the reflection phe- 
nomenon will be observed. 

Thus, scalar particles colliding with a strong Peres gravitational wave must change the 
direction of their propagation, and moreover, the phenomenon which we have termed reflection 
will occur. This phenomenon may be described by the statement that the particles do not pen- 
etrate beyond some well defined gravitational wave propagation front. But in no case does 
reflection occur from the forward wave propagation front. 
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