
Qi (i = I, 2, 3, 4) is the annihilation operator of the i-th Q-spurlon (or the creation 
operator of an anti-Q-spurion), and Q~ (i = i, 2, 3, 4) is the creation operator of the i-th 
Q-spurion (or the annihilation operator of an anti-Q-spurion). The Q-spurions are auxiliary 
fictitious particles having the following properties: 

i) The operators ~i and Q* commute with the field operators. 

2) If ~, and ~2 are vectors in Hilbert state space, then 

~' t6 ~,~,~,. ~ ..: 

where x is a positive integer (or zero). 

3) Under the transformations (9a)-(lla) the operators Qi are transformed according to the 
laws 

A A A ,̂ . A A 
Q ~ " Q i = e ~ i 2 ; ~ ( 4 i ;  Q .... Q ' = e ( i ~ ) ' ; ~ ' Q :  (9d) 

A A A 

C4~--~ Q,I = Q;; 

/ ,  .'~ A 
Q, , (,); ..-. #~; 

�9 " .... exPl 2 g'"<~ 

~,~ -~, ' = exp i ' - -  7",...:-',.. Q. 

The Lagrangian for the entire system of fields has the form 

L .... L (q, n, B.~, W:,. & , )  ,.. L (~) , - -L(n,  q, .~). 

(lOc) 

(Zlb) 

(~4) 

In our next article we shall investigate the vacuum corresponding to this Lagrangian. 

i. 
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CHANGE IN THE TOPOLOGY OF PHYSICAL SPACE IN A CLOSED UNIVERSE 

A. K. Guts UDC 530.12;531.51 

The conditions under which physical space alters the number of connected components 
are determined. 

The classical representation of physical space assigns it a connectedness, which is a 
fundamental topological property. Physical space, which is in essence a three-dimensional 
connected manifold, is combined with the time to form a common four-dimenslonal space--time. 
If we now consider a model of a connected, but not singly connected, space--time, then it is 
quite possible that we may observe some unconnected three-dimensional spacelike cross sections. 
Furthermore, an unconnected cross section Mx can be obtained from a connected one Mo through 
a spherical change in structure [I], so that a connected cross section and an unconnected one 
may be thought of as the initial and final states of some geometrodynamic process (a 
Lorentzian cobordism [i]). In the course of this process, the three-geometry undergoes a 
transition through a critical state MI/2, which corresponds to a disruption of the connected- 
ness of the spacelike cross section. 

It would be interesting [i] to determine under which conditions the connectedness of the 
spacelike cross sections is disrupted; or, if we put aside the question of the particular 
differential-topology model, it would be interesting to determine whether the three-dimensional 
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space Mo becomes unconnected in the course of some physical process. Loosely speaking, we 
could say that a disruption of the connectedness means that a region Do is torn away from Mo. 

The transformation from Mo to Ma can be performed by contracting to a point ~* the 
boundary ~Do of the closed region Do( Mo, The result is the space Ma/~ = C~2LiDz:~ , where 
CI/2 and D~/2 have a single common point, a* (the result of the contraction of 3Do) and are 
connected components of the space M,. At this point, D,/= is torn away from Ca/:~, and we 
find Ms. 

Geometrically, the disruption of connectedness may be characterized as a decrease to zero 
o~ the area of the surface 8Do which bounds the region which is torn away, Do. This means 
that the connectedness of the space is disrupted by a perturbation of the metric~ 7~->7~ +-gT=~ 
(a, B = I, 2, 3). A local perturbation of the metric leads to a change in the curvature of 
three-space. In the general theory of relativity, three-space is treated as a spacelike cross 
section of space--time. We should therefore work from a perturbation of the four-metric gik 
(i, k = O, i, 2, 3) of the space--time which initiates a perturbation of the metric ~'~ of 
three-space. According to Einstein's equations, the initial cause of the perturbation of the 
metric is the appearance of an additional local energy source. The energy expenditure which 
would be necessary to disrupt the connectedness of three-space could easily be calculated 
if we had an equation relating some numerical characteristic of the conneetedness of a space 
to the curvature of this space. 

In the case of a closed three-space M, a numerical characteristic meeting this description 
is the zero-dimensional getti number 8o (M) [2]. We also have the necessary, equation, but ad- 
mittedly only for the particular case of a closed, oriented, Riemannian three-space M with 
the metric 7-~ which permits a regular unique Killing vector field ~ [3]: 

il 1 . {A.(~.,.). - 3 K ( ~ ) } d v = = 2 > o ( . W ) _ ~ , ( M ) _ _ . . d o  ' 
2r.l (~) ~i~ 

(1) 

where do = 0 or i, depending on whether the one-dimensional Betti number 8,(M); K('::) is of 
even or odd parity; ; K (~) is the Riemannian curvature in the plane orthogonal to ~; K(.:) 
is the Riemannian curvature for an arbitrary plane which contains ~ [we note that K(~) does 
not depend on the choice of this plane] ; dv is the volume form; and l(~) is the length of the 
integral path of the field ~ (a constant). 

We tear the region Do away in the following manner. On the three-manifold Mo we specify 
a family of Riemannian metrics "i=> (t), t(:[."), I I , which satisfies the following conditions. 

a) For 0 ~ t < I 2, 7~)(l) is a C2-smooth tensor field, while at t "-1/2 it has dis- 
continuities in its first order derivatives at the boundary ~Do of the closed region Do; 

b) (Contraction of ~Do to a point a*). The area s t of the boundary 3Do calculated in the 
metric 7=~ (t) tends toward zero in the limit t -+ 1/2 -- O; in other words, 

dz', ioD:--> 0 and dv ,  ioo,. :- 0 for t ' . .  1 2. 
t-~l,2--O 

I 
w h e r e  d v t  i s  t h e  v o l u m e  f o r m  i n  t h e  m e t r i c ; ' ~ ( t ) ; d v s ' d V , < ~ l o n  M 0. t . / . - - < s i  

c) The space < M0, ;'~(0)>, i.e., No with the metric 7,: (0)~ is a connected C2-smooth 
Riemannian manifold, while Ct ~ (Mo\.D,~):._~ {~-§ andDt -- Do_~ {~'~} with the metric ~,5 (t), ~ ~ I/2 , 
and supplemented with the Doint ~* - -- are C2-smooth connected Riemannian closed mar, i folds. 

d) The JT,~'0n , where n is the normal to the space ,. M~,. :<~(i)>, are continuous. 

e) We have 7,:(I)= 7,~(0)outside the neighborhood O~ of the region Do; 

f) The space ,q M 0, ;~: (1) , ! > I 2 has a nonnegative curvature. 

g) The space <~ ~%1,~, ; ~(!)>, t Q [0, 1! permits a regular unique Killing field ~ 

The last of these assumptions is the least attractive, since as Do is being torn 
away from Mo the symmetry of the three-space may apparently disappear as the critical value 
t = 1/2 is approached. However, understanding this point, we are forced to introduce condition 
g, so that we may use Eq~ (i). Yodzis [i] has pointed out that it is necessary to assume a 
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syrmnetry as a means for making some sort of progress toward a solution of our problem�9 

We will use the index "t" to indicate entities which correspond to the space < W,, 7~>(t) > 

For simplicity we assume that we always have < M.,, To~(t)~ The space t < 1/2 is con- 
nectedj so that ~ O. 

( f ( ~ , )  da, = 4=I (~,), 
:,, ( 2 )  

where 

f(~_,) :=- K (~;-) :--31C(~,). 

At s > 1/2 the space <,44. 7,[~ (s) :'.- has two connected components. 

I'/(~,)d~,~ 4~.l (~i), i ' f (~ , )dv ,  4 ~ l ' "  , = , : . - :  (:..,.). 
�9 y 

Consequently, 

(3) 

where the primes on =, distinguish the connected-component field i s 

From (2) and (3) we find 

~.t (:.,) d% --. f(~t) dr.}  4= {! (LI) --~ ! (~]) -- ! (~,)~. 
b~ 

It is ~latural to assume that the volume of Do is small in comparison with the entire 
space. We thus have I(~)~ {(~i),and I(~) agrees in order of magnitude with the linear di- 
mension of the region Do. Furthermore, for values of t and s sufficiently close to 1/2 in 
O , we have d o~ dz, t I by virtue of condition b. By virtue of condition f, however, we 
then have 

} } .  o_: o ,  

i.e�9 

i~ f .  d v , ~  4=X, 
~ (4) 

where g/f(:~,) --f (:.t). 

Introducing the average value of g, 

1 ? 
<g>-- _ _  ~gdz't. 

vt(O~) ~)' 

where vt(O~ ) is the volume of the region O~ in the metric ;~($) , we can rewrite (4) in the 
form 

< gf]> .v t (O,) ~ 4=k. (5) 

This relation states that the tearing away of the region Do is accompanied by a discontinuity 
in the curvature of three-space. Since the scalar curvature <:~R of three-space can be written 
[4] 

'.~'Rt = '2 {K (~ i )  'i- 2K (~.t)}. 

we should assume 

< ~I~)R > .~, < a / > .  (6) 

From Einstein's equations we have [5] 
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16r.O ~:~R, + K2,: = ~ ( t ) ,  K2,~ = (K'$)  ~- - K ,~K ~?', 
C l (7) 

where K,, is the external-curvature tensor of the spatial cross section, and ~(1) is tb~ 
energy density. By virtue of condition d, the invariant K~,~ = K=,(x), x6Mo, t6[0, I] is~ ~ 
continuous function on iW,,~ [0, I] . Consequently, if 8K2=K2.~--K~,t, then 

_ := I_,,-=x#,~'; - - - - >  O. 
t -~-I '2--(~ 
s -~ l ,2+0  

For certain t& < 1/2 and 1/2 < So, the quantity < ~ K , ~ "  is therefore negligibly small, 
and in this case we find from (5)-(7) 

which may be rewritten as 

C i }, 

4~U v:, ( O J '  

c ~ i 

4zG = 

where q is a characteristic cross section of the region Do. 

Using this relation we find the following: 

i) For ~ ~I0 ~'~ cm 2 (the sun). we have < ~> : <~> c 2 - I0: g/era'; 2) for =~ |0 '2 cm 2 (a 
neutron star), we nave <~> ~ !0 ,~ g/cm s', 3) for ~ ] km a, we have .~ ~>-. |0 '~ g/cmS~ and 4) 
for =-~I() -<i~ cm 2 ~the Big Bang), we have <g,,> ~|0~ ~.~ g/cms. 

We thus see that the tearing away of small regions is prevented by a high potential 
barrier. The disruption of the connectedness apparently occurs near singularities of the 
curvature and near black holes. Neutron stars are nearly in a situation as to be torn away 
from the surrounding space. These conclusions are in satisfactory agreement with the circum- 
stance that neutron configurations undergo a gravitational collapse when they lose stability. 

Comment. Using arguments similar to those above, we could derive conditions for the 
formation of "handles" on the physical space M. In other words, we could determine the energy 
expenditure required to disrupt the single-connectedness of the space (~L(M)=0-+~!(M)=~0!. 
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