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ABSTRACT

The topos theory is a theory which is used for deciding a number of prob-
lems of theory of relativity, gravitation and quantum physics. It is known
that topos-theoretic geometry can be successfully developed within the frame-
work of Synthetic Differential Geometry of Kock-Lawvere (SDG), the models
of which are serving the toposes, i.e. categories possessing many characteristics
of traditional Theory of Sets. In the article by using ideas SDG, non-classical
spherically symmetric solution of the vacuum Einstein equations is given.
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Theoretical physics always tended operatively to use new ideas coming
up from the mathematics. So it is not wonderful that new topos-theoretic
mathematics [1, 2] was immediately called to deciding a number of problems
of theory of relativity and gravitation [3, 4, 5, 6, 7] and quantum physics [8].
Formally, for instance, it is suitable to develop the topos-theoretic geometry
within the framework of Synthetic Differential Geometry of Kock-Lawvere [2]
(further for brevity we write SDG), models of which are serving toposes, i.e.
categories possessing many characteristics of traditional Theory of Sets. Last
theory was the basis of mathematics of the XX century. In the article by using
ideas SDG, non-classical solution of the vacuum Einstein equations is given.

1 Intuitionistic theory of gravitation

Synthetic Differential Geometry of Kock-Lawvere [2] is built on the base of
change the field of real numbers IR on commutative ring R, allowing to define
on him differentiation, integrating and ”natural numbers”. It is assumed that
there exists D such that D = {x ∈ R | x2 = 0} and that following the
Kock-Lawvere axiom is held:

for any g : D → R it exist the only a, b ∈ R such that for any
d ∈ D g(d) = a + d · b.

This means that any function in given geometry is differentiable, but ”the
law of excluded middle” is false. In other words, intuitionistic logic acts in
SDG. But on this way one is possible building an intuitionistic theory of grav-
itation in analogy with the General theory of Relativity of Einstein [5, 6, 7].
The elements of d ∈ D are called infinitesimals, i.e. infinitesimal numbers. On
the ring R we can look as on the field of real numbers IR complemented by
infinitesimals.

The vacuum Einstein equations in SDG in space-time R4 can be written
with nonzero tensor of the energy. For instance,

Rik −
1

2
gik(R − 2Λ) =

8πG

c2
duiuk, (1)

where density of matter d ∈ D is arbitrarily taken infinitesimal [9]. For in-
finitesimals are holding relations which are impossible from standpoints of
classical logic: d 6= 0, d ≤ 0 & d ≥ 0 and −ǫ < d < ǫ for any ǫ ∈ R, ǫ > 0.
Such non-classical density of vacuum matter will consistent with zero in right
part of the Einstein’s equations in the case of the vacuum in classical General
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theory of Relativity. For this one is sufficiently to consider SDG in so named
well-adapted models, in which we can act within the framework of classical
logic. For instance, in smooth topos SetLop, where L category C∞-rings [10],
the equations (1) at stage of locus ℓA = ℓ(C∞(IRn)/I), I is a certain ideal of
C∞-smooth functions from IRn to IR, have the form

Rik(a) −
1

2
gik(a)(R(u) − 2Λ(a)) =

8πG

c2
d(a)ui(a)uk(a) mod I, (2)

where a ∈ IRn in parenthesises shows that we have functions, but at stage
1 = ℓ(C∞(IR)/{a}), equations (2) take a classical form with null (on mod {a})
tensor of the energy.

Note that an event x of the space-time R4 at stage ℓA is the class of C∞-
smooth vector functions (X0(a), X1(a), X2(a), X3(a)) : IRn → IR4, where each
function X i(a) is taken by mod I. The argument a ∈ IRn is some ”hidden”
parameter corresponding to the stage ℓA. Hence it follows that at stage of real
numbers R = ℓC∞(IR) of the topos under consideration an event x is described
by just a C∞-smooth vector function (X0(a), X1(a), X2(a), X3(a)), a ∈ IR. At
stage of R2 = ℓC∞(IR2) an event x is 2-dimensional surface, i.e. a string. The
classical four numbers (x0, x1, x2, x3), the coordinates of the event x, are
obtained at the stage 1 = ℓC∞(IR0) = ℓC∞(IR)/{a} (the ideal {a} allows one
to identify functions if their values at 0 coincide), i.e., xi = X i(0), i = 0, 1, 2, 3.

2 Spherically symmetrical field

We have the Einstein equations describing the gravitational field created by
certain material system

Rik −
1

2
gik(R − 2Λ) = κTik

Here Rik = Rl
ilk, R = gikRik, κ = 8πG/c4.

Consider case, when gravitational field possesses a central symmetry. Cen-
tral symmetry of field means that interval of space-time can be taken in the
form

ds2 = eν(r,t)dt2 − eλ(r,t)dr2 − r2(dθ2 + sin2 θ · dϕ2)

Note that such type of metric does not define else choice of time coordinate by
unambiguous image: given metric can be else subject to any transformation
of type t = f(t′) not containing r.
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All calculations are conducted also as in the classical case. Herewith we con-
sider components of metric tensor by invertible values in R. For the Christoffel
coefficients we have the usual formula

Γi
kl =

1

2
gim(

∂gmk

∂xl
+

∂gml

∂xk
−

∂gkl

∂xm
).

Hence we have

Γ1
11 =

λ′

2
, Γ0

10 =
ν ′

2
, Γ2

33 = − sin θ cos θ, Γ0
11 =

λ̇

2
eλ−ν , Γ1

22 = −re−λ, Γ1
00 =

ν ′

2
eν−λ,

Γ2
12 = Γ3

13 = 1/r, Γ3
33 = ctgθ, Γ0

00 =
ν̇

2
, Γ1

10 =
λ̇

2
, Γ1

33 = −r sin2 θe−λ.

Here the prime means differentiation with respect to r, and dot means
differentiation with respect to t.

Tensor of Ricci is also calculated with help of known formula

Rik =
∂Γl

ki

∂xl

−
∂Γl

il

∂xk

+ Γl
ikΓ

m
lm − Γm

il Γ
l
km.

The Einstein’s equations have the form:

−e−λ(
ν ′

r
+

1

r2
) +

1

r2
− Λ = κT 1

1 (3)

−
1

2
e−λ(ν ′′ +

ν ′2

2
+

ν ′ − λ′

r
−

ν ′λ′

2
) +

1

2
e−ν(λ̈ +

λ̇2

2
−

ν̇λ̇

2
) − Λ = κT 2

2 = κT 3
3

(4)

−e−λ(
1

r2
−

λ′

r
) +

1

r2
− Λ = κT 0

0 (5)

−e−λ λ̇

r
= κT 1

0 (6)

Equation (4), as it is well known [11], is corollary of equations (3), (5), (6)
and the law of conservation

T ik
;k = 0. (7)

So further the equation (4) will be omited.
2.1. Field of vacuum. Consider now important example of gravitational

field in the vacuum. For this we will take T i
k = c2ρuiuk, i.e. tensor of the energy
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of dust matter. Here ρ is density of dust in the space which will consider further
constant value. Suppose that dust is described in coordinate system in which
ui = (e−

ν

2 , 0, 0, 0), uk = gikui = (e
ν

2 , 0, 0, 0). So T 0
0 = c2ρ, T 1

1 = T 2
2 = T 3

3 = 0
and equations (3),(5),(6) will take following forms

−e−λ(
ν ′

r
+

1

r2
) +

1

r2
− Λ = 0 (8)

−e−λ(
1

r2
−

λ′

r
) +

1

r2
− Λ = κc2ρ (9)

−e−λ λ̇

r
= 0 (10)

By using form of tensor T i
k and equation (10) we rewrite the equation (7)

as follows
ρν ′ = 0 (11)

Try to solve equations (8)-(10) using equation (11). From equation (10)
it follows that λ(r, t) = λ(r), i.e. λ does not depend on coordinate t. As far
as ρ and Λ are constants, the equation (9) can be easy integrated. Really, by
taking e−λ for u, we get

u′r + u = 1 − (Λ + κc2ρ)r2 (12)

Solution of uniform equation u′r + u has form u =
A

r
, where A = const.

Thereby, for non-uniform equation we will get u =
A(r)

r
. Substituting this in

(12), we have for A(r):

A′(r) = 1 − (Λ + κc2ρ)r2

Solution of this equation is function

A(r) = r −
(Λ + κc2ρ)r3

3
+ C.

Thence

u(r) = 1 −
(Λ + κc2ρ)r2

3
+

C

r
or

e−λ = 1 −
(Λ + κc2ρ)r2

3
+

C

r
(13)
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Here C is a constant of integrating.
Hereinafter, to find an expression for ν, we need integrate an equation (8).

But for the beginning we consider an equation (11).
Notice that ρ = d, ν = d under any d ∈ D are its solutions. Thereby, from

existence of such objects as D, D2, D(2), △ and etc [2], it follows that except
classical its solutions

(ρ = 0 & ν 6= 0) ∨ (ν = 0 & ρ 6= 0) ∨ (ρ = 0 & ν = 0)

there exist and the others, non-classical one. For example, ρ and ν that are
inseparable from the zero (x is separable from the zero, if there exists a natural
number n such that (1/n) < x ∨ x < −(1/n)) . The First from classical cases
above gives well-known the classical Schwarzschild solution.

Consider non-classical case of deciding an equation (11), when both values
ρ and ν are simultaneously inseparable from the zero. Substituting (13) in (8)
and considering (11) we get

ν ′

r
(1 +

C

r
−

Λr2

3
) +

2

3
Λ −

κc2ρ

3
+

C

r3
= 0 (14)

Thence easy notice that
2

3
Λ +

C

r3
is inseparable from the zero. Besides, when

considering this expressions in topos SetLop at stage 1 this expression becomes
an equal to zero that is possible in that case only, when and Λ and C at this
stage are zero. Thereby, we conclude that C and Λ are also inconvertible, but

hence and
C

r
−

Λr2

3
is inconvertible. By using now (11), we will transform

(14) to the form

ν ′(1 +
C

r
−

Λr2

3
+

κc2ρr2

6
) =

κc2ρr

3
−

2

3
Λ · r −

C

r2

or, that is equivalent,

ν ′ =

κc2ρr

3
−

2

3
Λ · r −

C

r2

1 +
C

r
−

Λr2

3
+

κc2ρr2

6

, (15)

Deciding equation (15) we find that

ν = ln

∣

∣

∣

∣

∣

1 +
C

r
−

Λr2

3
+

κc2ρr2

6

∣

∣

∣

∣

∣

+ f(t),
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where f(t) is arbitrary function that is depending only on coordinate t. On the
strength of that that we left for itself else possibility of arbitrary transformation
of time t = g(t′), which is equivalent addition to ν an arbitrary functions
of time, f(t) can always be made to be equal to zero. Hence, not limiting
generalities, it is possible to consider that

ν = ln

∣

∣

∣

∣

∣

1 +
C

r
−

Λr2

3
+

κc2ρr2

6

∣

∣

∣

∣

∣

(16)

Substituting these values for λ and ν in expression for ds2, we get that

ds2 =

(

1 +
(κc2ρ − 2Λ)r2

6
+

C

r

)

dt2 −
dr2

1 −
(Λ + κc2ρ)r2

3
+

C

r

−

−r2(dθ2 + sin2 θ · dϕ2) (17)

This metric can be called the non-classical Schwarzschild solution of the Ein-
stein equations

Suppose that gravitational field has no singularity in all space. This means
that metric has no singularity in r = 0. So we shall consider that C is zero.
Coming from this and multiplying the right and left parts of equations (14) on
ρ, we get that 2Λρ = κc2ρ2 and, besides, Λ is inconvertible value of ring R.

In other words, matter has non-classical density, and its gravitational field
has the form

ds2 =

(

1 +
(κc2ρ − 2Λ)r2

6

)

dt2 −
dr2

1 −
(Λ + κc2ρ)r2

3

− r2(dθ2 + sin2 θ · dϕ2)

In topos SetLop at stage 1 this metric complies with the metric of the Minkowski
space-time. Roughly speaking, non-classical ”dust” vacuum has the ”infinites-
imal” weak gravitational field.

2.2. Field of gas ball. Suppose that gravitational field was created by
spherical gas ball of radius a with tensor of the energy T̃ik. From formula (5)
under condition of absence a singularity of matter of the form λ|r=0 = 0 we
get

λ = − ln



1 −
κ

r

r
∫

0

T̃ 0
0 r2dr −

Λr2

3





Outside of the ball we have the vacuum with T̃ik = c2ρuiuk and with gravi-
tational field that was studied in the preceding point. So it is possible to use
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expression (13), from which it follows that

λ = − ln

(

1 −
Λ + κc2ρ

3
r2 +

C

r

)

Comparing both expressions under r = a, we find that

C = κ ·





c2ρa3

3
−

a
∫

0

T̃ 0
0 r2dr



 (18)

By using that C and ρ are inconvertible and (18), we get that
∫ a
0 T̃ 0

0 r2dr is

inconvertible. This is possible only in two cases: 1) T̃ 0
0 is inseparable from the

zero; 2) a is inseparable from the zero.
Thereby, the following theorem is true.
Theorem. Let gas ball possesses classical nonzero density (T̃ 0

0 6= 0) and
creates external spherically symmetrical gravitational field (17) with dust in-
finitesimal density ρ. Then ball has infinitesimal sizes.

It is interesting that in the classical case the Schwarzschild solution was
found in the suggestion that gravitational field is created by the ball that
is so naming material point, which is not having sizes. Such situation was
characterized by the word ”simplification”. In non-classical case a material
point gets wholly legal sizes, but they will be described infinitesimal numbers.

Notice that unlike classical solution, constant C can not so simply be ex-
pressed through the mass of ball. Really, following classical procedure, we are
noting that on greater distances, where field is weak, the field must be de-

scribed by the Newton’s Law. Hence, g00 = 1 −
2Gm

c2r
, where m is a mass of

ball. On the other hand, g00 = 1 +
κc2ρ − 2Λ

6
r2 +

C

r
. Thence it is seen that

C =
2Λ − κc2ρ

6
r3 −

2Gm

c2
. This gives contradiction with C = const.

In topos SetLop at stage 1 metric (17) complies with the metric of the
Partial theory of Relativity. So cosmological model with this metric can be
called a generalized model of the Partial theory of Relativity .
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